Министерство образования и науки Республики Татарстан

Государственное автономное профессиональное образовательное учреждение «Зеленодольский судостроительный колледж» (ГАПОУ «ЗСК»)

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ УЧЕБНОЙ ДИСЦИПЛИНЫ

СРЕДНЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ (ПРОГРАММА ПОДГОТОВКИ СПЕЦИАЛИСТОВ СРЕДНЕГО ЗВЕНА)

ОУД.01.09. ХИМИЯ

по специальности 26.02.04 Монтаж и техническое обслуживание судовых машин и механизмов.

квалификация техник

форма обучения (очная)

Фонд оценочных средств (ФОС) по дисциплине разработан согласно требованиям Федерального государственного стандарта 26.02.04 Монтаж и техническое обслуживание судовых машин и механизмов и является неотъемлемой частью реализации программы дисциплины ОУД.01.09. ХИМИЯ

Организация-разработчик: ГАПОУ «Зеленодольский судостроительный колледж» (ГАПОУ «ЗСК»).

Разработчик:

Котельникова В.В. -преподаватель первой квалификационной категории.

Назначение:

ФОС предназначены для контроля и оценки результатов освоения дисциплины, для аттестации обучающихся на соответствие их персональных достижений (знания, умения и освоенные компетенции) требованиям программы дисциплины ОУД.01.09. XИМИЯ.

Фонд оценочных средств рассмотрен и одобрен на заседании Педагогического совета ГАПОУ «ЗСК» протокол № 1 от «01» сентября 2023г.

1. ПАСПОРТ ФОНДА ОЦЕНОЧНЫХ СРЕДСТВ

Фонд оценочных средств учебной дисциплины (предмета) ОУД.01.09. Химия может быть использован при различных образовательных технологиях, в том числе и как дистанционные контрольные средства при электронном / дистанционном обучении.

В результате освоения учебной дисциплины (предмета) ОУД.01.09. Химия обучающийся должен обладать предусмотренными ФГОС СОО и ФГОС СПО по специальности 26.02.04 Монтаж и техническое обслуживание судовых машин и механизмов, следующими умениями, знаниями, которые формируют общие и профессиональные компетенции, а также личностными результатами, осваиваемыми в рамках программы воспитания:

-уметь:

- У1. Называть изученные вещества по тривиальной или международной номенклатуре;
- **У2**. Определять: валентность и степень окисления химических элементов, тип химической связи в соединениях, заряд иона, характер среды в водных растворах неорганических и органических соединений, окислитель и восстановитель, принадлежность веществ к разным классам неорганических и органических соединений;
- **У3**. Характеризовать: элементы малых периодов по их положению в Периодической системе Д.И.Менделеева; общие химические свойства металлов, неметаллов, неорганических и органических соединений; строение и химические свойства изученных неорганических и органических соединений;
- **У**4. Объяснять: зависимость свойств веществ от их состава и строения, природу химической связи (ионной и ковалентной, металлической и водородной), зависимость скорости химической реакции и положение химического равновесия от различных факторов;
- **У5.** Выполнять химический эксперимент по распознаванию важнейших неорганических и органических веществ;
- **У**6. Проводить: самостоятельный поиск химической информации с использованием различных источников (научно-популярных изданий, компьютерных баз данных, ресурсов Интернета); использовать компьютерные технологии для обработки и передачи химической информации и её представления в различных формах;

-знать:

- 31. Важнейшие химические понятия: вещество, химический элемент, атом, молекула, относительные атомные и молекулярные массы, ион, аллотропия, изотопы, химическая связь, электроотрицательность, валентность, степень окисления, моль, молярная масса, молярный объём газообразных веществ, растворы, электролит и неэлектролит, электролитическая диссоциация, окислитель и восстановитель, окисление и восстановление, тепловой эффект реакции, скорость химической реакции, катализ, химическое равновесие, углеродный скелет, функциональная группа, изомерия, гомология;
- **32.** Основные законы химии: сохранения массы веществ, постоянства состава веществ, Периодический закон Д.И.Менделеева;
- 33. Основные теории химии: химической связи, электролитической диссоциации, строения органических и неорганических соединений;
- 34. Важнейшие вещества и материалы: важнейшие металлы и сплавы; серная, соляная, азотная и уксусная кислоты; благородные газы, водород, кислород, галогены, щелочные металлы; основные, кислотные и амфотерные оксиды и гидроксиды, щёлочи, углекислый и угарный газы, сернистый газ, аммиак, вода, природный газ, метан, этан, этилен, ацетилен, хлорид натрия, карбонат и гидрокарбонат натрия, карбонат и фосфат кальция, бензол, метанол, этанол, сложные эфиры, жиры, мыла, моносахариды(глюкоза), дисахариды (сахароза), полисахариды (крахмал и целлюлоза), анилин, аминокислоты, белки, искусственные и синтетические волокна, каучуки, пластмассы.

-общие компетенции:

- ОК 01. Выбирать способы решения задач профессиональной деятельности применительно к различным контекстам;
 - ОК 02. Использовать современные средства поиска, анализа и интерпретации информации и

информационные технологии для выполнения задач профессиональной деятельности;

- ОК 04. Эффективно взаимодействовать и работать в коллективе и команде;
- ОК 07. Содействовать сохранению окружающей среды, ресурсосбережению, применять знания об изменении климата, принципы бережливого производства, эффективно действовать в чрезвычайных ситуациях;

-профессиональные компетенции:

ПК 2.1. Обеспечивать техническое обслуживание устройств систем сигнализации, централизации и блокировки, железнодорожной автоматики и телемеханики;

-личностные результаты:

- **ЛР 2** Проявляющий активную гражданскую позицию, демонстрирующий приверженность принципам честности, порядочности, открытости, экономически активный и участвующий в студенческом и территориальном самоуправлении, в том числе на условиях добровольчества, продуктивно взаимодействующий и участвующий в деятельности общественных организаций.
- **ЛР 4** Проявляющий и демонстрирующий уважение к людям труда, осознающий ценность собственного труда. Стремящийся к формированию в сетевой среде личностно и профессионального конструктивного «цифрового следа».
- **ЛР 16** Приобретение обучающимися социально значимых знаний о правилах ведения экологического образа жизни о нормах и традициях трудовой деятельности человека о нормах и традициях поведения человека в многонациональном, многокультурном обществе.
 - ЛР 23 Получение обучающимися возможности самораскрытия и самореализация личности.
- **ЛР 30** Осуществляющий поиск и использование информации, необходимой для эффективного выполнения различных задач, профессионального и личностного развития.

Формой промежуточной аттестации по учебной дисциплине является дифференцированный зачёт.

2. РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ (ПРЕДМЕТА), ПОДЛЕЖАЩИЕ ПРОВЕРКЕ

2.1. В результате аттестации по учебной дисциплине (предмету) осуществляется комплексная проверка следующих умений и знаний, а также динамика формирования общих, профессиональных компетенций и личностных результатов в рамках программы воспитания:

Таблица 2.1

		Таолица 2.
Результаты обучения: умения, знания, компетенции и личностные результаты	Показатели оценки результата	Форма и методы контроля и оценки результатов обучения
Уметь:		
У1. Называть изученные вещества по тривиальной или международной номенклатуре; ОК 01; ОК 02 Л.4,6,7,9,12,13,	1) Написание и чтение знаков химических элементов; 2) различие простых и сложных веществ, смесей и сложных веществ; 3) составление формул бинарных соединений и их название; 4) чтение и название формул химических соединений, принадлежаших к важнейшим классам неорганических соединений; 5) составление структурных формул всевозможных гомологов и изомеров предельных и непредельных углеводородов; 6) составление структурных формул важнейших кислородсодержащих органических соединений; 7) написание структурных формул всех возможных изомеров азотсодержащих органических соединений; 8) составление названий всех используемых формул химических соединений по тривиальной и международной номенклатуре.	Устный опрос. Результаты выполнения и защиты практических занятий и лабораторных работ.

У2. Определять: валентность и степень окисления химических элементов, тип химической связи всоединениях, заряд иона, характер среды в водных растворах неорганических и органических соединений, окислитель и восстановитель, принадлежность веществ кразным классам неорганических и органических соединений; OK 01; OK 02; OK 04 ПК 2.1. ЛР 2,4, 16, 23,30

- 1) Определение состава вещества по их формулам;
- 2) определение признаков химических реакций;
- 3) применение закона сохранения массы веществ при написании уравнений;
- 4) составление химических уравнений, уравнивание их;
- 5) определение валентности и степени окисления элементов в неорганических соединениях;
- б) определение валентности и степени окисления элементов в органических соединениях;
- 7) распознавание окислительно-восстановительного процесса;
- 8) определение направления "движения" электронов;
- 9) составление электронного баланса;
- 10) определение заряда иона;
- 11) определение изомеров и гомологов различных классов органических соединений;
- 12) определение окислителя и восстановителя в окислительно-восстановительных реакциях;
- 13) определение по химическим формулам, принадлежность веществ к определенному классу соединений;
- 14) определение рН среды раствора, в зависимости от типа гидролиза соли;
- 15) определение различных видов химической связи по формуле неорганических и органических веществ;
- 16) написание схем образования химической связи в указанных соединениях.

Устный опрос. Результаты выполнения и защиты практических занятий и лабораторных работ.

- У3. Характеризовать: элементы малых периодов по их положению в Периодической системе Д.И.Менделеева; общие химические свойства металлов, неметаллов, неорганических и органических соединений; строение и химические свойства изученных неорганических и органических и органических и
- OK 01; OK 02; OK 04, OK

- 1) Составление формул оксидов, водородных соединений неметаллов, гидроксидов, солей;
- 2) составление схем строения атомов элементов первых четырёх периодов Периодической системы;
- 3) описание важнейших свойств и характеристик химических элементов по плану, на основе положения в Периодической системе;
- 4) анализирование окислительновосстановительных свойств атомов, ионов и веществ, а также их силы на основе знаний о строении и периодичности и по положению в

Устный опрос. Результаты выполнения и защиты практических занятий и лабораторных работ.

07 ПК 2.1. ЛР 2,4, 16, 23,30	Периодической системе; 5) сравнение относительной электроотрицательности элементов по их положению в Периодической системе; 6) сравнение физических свойств металлов и неметаллов; 7) описание основных химических свойств металлов, неметаллов и их соединений; 8) построение структурных формул неорганических и органических соединений; 9) описание химических свойств важнейших классов органических соединений.	
У4. Объяснять: зависимость свойств веществ от их состава и строения, природу химической связи (ионной и ковалентной, металлической и водородной), зависимость скорости химической реакции и положение химического равновесия от различных факторов; ОК 01; ОК 02; ОК 07 ЛР 2,4, 16, 23,30	1) Объяснение физических и химических явлений с точки зрения атомномолекулярного учения; 2) выявление зависимости между строением химических соединений и их свойствами (на примере кислот, солей, оснований, углеводородов, кислородосодержащих и азотсодержащих органических соединений); 3) составление схем образования веществ с различными видами химической связи; 4) разъяснение зависимости скорости химических реакций от различных факторов и смещения химического равновесия в зависимости от условий течения реакций.	Устный опрос. Результаты выполнения и защиты практических занятий и лабораторных работ.
У5. Выполнять химический эксперимент по распознаванию важнейших неорганических и органических веществ ОК 01; ОК 02; ОК 04, ОК 07 ЛР 2,4, 16, 23,30	1) Проведение простейшего химического эксперимента с соблюдением правил техники безопасности; 2) наблюдение, фиксация и описание результатов проведенного эксперимента; 3) определение возможности протекания химических превращений в различных условиях и оценки их последствий; 4) безопасное обращение с горючими и токсичными веществами, лабораторным оборудованием; 5) приготовление растворов заданной концентрации в быту и на производстве.	Устный опрос. Результаты выполнения и защиты практических занятий и лабораторных работ.
У6. Проводить: самостоятельный поиск химической информации с использованием	1) Использование основной учебной литературы для поиска химической инфоормации; 2) использование дополнительных	Устный опрос. Результаты выполнения и защиты

различных источников - (научно-популярных изданий, компьютерных баз данных, ресурсов Интернета); использовать компьютерные технологии для обработки и передачи химической информации и её представления в различных формах; ОК 01; ОК 02; ОК 04, ОК 07 ПК 2.1. ЛР 2,4, 16, 23,30	литературных источников; 3)использование интернет-ресурсов; 4) составление презентаций для обработки и представления химической информации; 5) анализирование используемых источников.	практических занятий и лабораторных работ.
Знать: 31. Важнейшие химические понятия: вещество, химический элемент, атом, молекула, относительные атомные и молекулярные массы, ион, аллотропия, изотопы, химическая связь, электроотрицательность, валентность, степень окисления, моль, молярная масса, молярный объём газообразных веществ, растворы, электролит и неэлектролит, электролитическая диссоциация, окислитель и восстановитель, окисление и восстановление, тепловой эффект реакции, скорость химической реакции, катализ, химическое равновесие, углеродный скелет, функциональная группа, изомерия, гомология; ОК 01; ОК 02; ОК 04, ОК 07 ЛР 2,4, 16, 23,30	1) Воспроизведение формулировки важнейших химически понятий; 2) перечисление существенных признаков понятия; 3) установление связи данного понятия с другими, ранее сформированными; 4) приведение разных способов выражения понятий; 5) использование важнейших химических понятия для объяснения отдельных фактов и явлений.	Устный опрос. Результаты выполнения и защиты практических занятий и лабораторных работ.
32. Основные законы химии: сохранения массы веществ, постоянства состава веществ, Периодический закон Д.И.Менделеева; ОК 01; ОК 02; ОК 07 ЛР 2,4, 16, 23,30	1) Воспроизведение формулировки законов; 2) применение закона сохранения массы веществ при написании химических уравнений; 3) применение закона постоянства состава вещества для установления простейшей молекулярной формулы	Устный опрос. Результаты выполнения и защиты практических занятий и лабораторных работ.

	вещества;	
	4) использование закона объёмных	
	отношений при решении расчётных	
	задач;	
	5) понимание смысла Периодического	
	закона Д.И. Менделеева и использование	
	его для качественного анализа и	
	обоснования	
	основных закономерностей строения	
	атомов, свойств химических элементов и	
	их соединений;	
	б) установление зависимости между	
	строением атома и химическими	
	свойствами элемента.	
33. Основные теории	1) Воспроизведение основных	Устный опрос.
химии: химической связи,	положений химических теорий;	Результаты
электролитической	2) применение основных положений	выполнения и
диссоциации, строения	химических теорий (строения атома,	
	химических теории (строения атома, химической связи, электролитической	защиты
органических и	_	практических занятий и
неорганических	диссоциации, кислот и оснований,	
соединений;	строения органических соединений,	лабораторных работ.
OK 01; OK 02; OK 07	химической кинетики) для анализа	
ЛР 2,4, 16, 23,30	строения и свойств веществ;	
	3) объяснение применимости изученных	
	химических теорий.	
34. Важнейшие вещества и	1) Написание и воспроизведение формул	Устный опрос.
материалы: важнейшие	важнейших химических веществ;	Результаты
металлы и сплавы; серная,	2) классифицирование неорганических и	выполнения и
соляная, азотная и	органических веществ;	защиты
уксусная кислоты;	по всем известным классификационным	практических
благородные газы,	признакам;	занятий и
водород, кислород,	3) установление зависимости между	лабораторных работ.
галогены, щелочные	практическим применением веществ и их	
металлы; основные,	составом, строением и свойствами;	
кислотные и амфотерные	4) перечисление роли и значения	
оксиды и гидроксиды,	данного вещества в практике;	
щёлочи, углекислый и	5) объяснение общих способов и	
угарный газы, сернистый	принципов получения наиболее	
газ, аммиак, вода,	важных веществ.	
природный газ, метан,		
этан, этилен, ацетилен,		
хлорид натрия, карбонат и		
гидрокарбонат натрия,		
карбонат и фосфат		
кальция, бензол, метанол,		
этанол, сложные эфиры,		
жиры, мыла,		
моносахариды(глюкоза),		
дисахариды (сахароза),		
полисахариды (крахмал и		
целлюлоза), анилин,		
· ·		
аминокислоты, белки,		

искусственные и	
синтетические волокна,	
каучуки, пластмассы.	
OK 01; OK 02; OK 04, OK	
07	
ПК 2.1.	
ЛР 2,4, 16, 23,30	

3. Оценка освоения учебной дисциплины (предмета)

3.1. Формы и методы оценивания

Предметом оценки служат умения и знания, предусмотренные ФГОС СОО и ФГОС СПО по дисциплине (предмету) ОУД.01.09. Химия, направленные на формирование общих и профессиональных компетенций, а также личностных результатов в рамках программы воспитания. Контроль и оценка результатов освоения учебной дисциплины осуществляется

Контроль и оценка результатов освоения учебной дисциплины осуществляется преподавателем в процессе проведения аудиторных занятий. Текущий контроль осуществляется в форме: устного опроса, полученных обучающимся, в процессе работы на занятиях, положительных оценок, защиты всех практических работ.

Промежуточная аттестация проводится в форме дифференцированного зачета.

Элемент учебной	емент учебной Формы и методы контроля					
дисциплины	Текущий контроль		Рубежны	ій контроль	Промежуточная аттестация	
	Форма контроля	Проверяемые У, 3, ОК, ПК, ЛР	Форма контроля	Проверяем ые У, 3, ОК, ПК, ЛР	Форма контроля	Проверяемые У, 3, ОК, ПК, ЛР
Раздел 1. Теоретические основы химии	T	У1, У2, У3, У4, У6, 3 1, 33, 34 ОК 01 ОК 02 ЛР 2,4,16,23,30		, ,	Дифференцирован- ный зачёт	У1, У2, У3, У4, У6, 3 1, 33, 34 ОК 01 ОК 02 ЛР 2,4,16,23,30
Тема 1.1 Строение атомов. Периодический закон и таблица Д.И. Менделеева	УО ПР №1 ПР №2 ПР №3 КР №1 СР Р33	У1, У2, У3, У4, У6, 3 1, 33, 34 ОК 01 ОК 02 ЛР 2,4,16,23,30				
Раздел 2. Химические реакции	T	У1, У2, У3, У4, У5, 3 1, 33, 34 ОК 01 ОК 02, ОК 04 ЛР 4,16,23,30			Дифференцирован- ный зачёт	У1, У2, У3, У4, У5, 3 1, 33, 34 ОК 01 ОК 02, ОК 04 ЛР 4,16,23,30
Тема 2.1 Типы химических реакций	УО ПР №4 СР КР №1 Р33	У1, У2, У4, У6, 3 1, 33, 34 ОК 01 ОК 02 ЛР 4,16,23,30				
Тема 2.2 Электролитическая диссоциация и ионный обмен	ЛР №1 СР КР №1 Р33	У1, У2, У3, У4, У5, 3 1, 33, 34 ОК 01 ОК 02, ОК 04 ЛР 4,16,23,30				

Раздел 3. Строение	T	<i>Y1, Y2, Y3, Y5, Y6</i>	Дифференцирован-	<i>Y1, Y2, Y3, Y5, Y6</i>
вещества и свойства	KP	3 1, 33, 34	ный зачёт	3 1, 33, 34
неорганических веществ		OK 01 OK 02, OK 04,		OK 01 OK 02, OK
-		OK 07		04, OK 07
		ПК 2.1.		ПК 2.1.
		ЛР 4,16,23,30		ЛР 4,16,23,30
Тема 3.1 Классификация,	УО	<i>Y1, Y2, Y3, Y4, Y5,</i>		
номенклатура и строение	$\Pi P N_{2} 5$	3 1, 33, 34		
неорганических веществ	ПР №6	OK 01 OK 02		
•	Cp	ПК 2.1.		
	KP №1	ЛР 4,16,23,30		
	P33			
Тема 3.2 Физико-химические	УО	<i>Y1, Y2, Y3, Y5, Y6</i>		
свойства неорганических	$\Pi P N_{2}7$	3 1, 33, 34		
веществ. Металлы.	CP	OK 01 OK 02,		
	<i>KP №1</i>	ПК 2.1.		
	P33	ЛР 4,16,23,30		
Тема 3.2.1 Неметаллы	УО	<i>Y1, Y2, Y3, Y5, Y6</i>		
	<i>ЛР №2</i>	3 1, 33, 34		
	CP	OK 01 OK 02, OK 04		
	<i>KP №1</i>	ЛР 4,16,23,30		
	P33			
Тема 3.3 Идентификация	CP	<i>Y1, Y2, Y3, Y4, Y5,</i>		
неорганических соединений	<i>KP №1</i>	OK 01 OK 02		
•		OK 07		
		ЛР 4,16,23,30		
Раздел 4. Строение и	T	<i>Y1, Y2, Y3, Y4, Y5, Y6,</i>	Дифференцирован-	<i>V1, V2, V3, V4,</i>
свойства органических		3 1, 32, 33, 34	ный зачёт	<i>Y5, Y6,</i>
соединений		OK 01 OK 02		3 1, 32, 33, 34
		OK 04		OK 01 OK 02
		ПК 2.1.		OK 04
		ЛР 4,16,23,30		ПК 2.1.
				ЛР 4,16,23,30
Тема 4.1 Классификация,	УО	<i>Y1, Y2, Y3, Y4, Y6,</i>		
строение и номенклатура	CP	3 1, 32, 33, 34		
органических веществ		OK 01 OK 02		

		ЛР 4,16,23,30			
Тема 4.2 Свойства	УО	<i>Y1, Y2, Y3, Y4, Y5, Y6,</i>			
органических соединений.	ПР №8	3 1, 32, 33, 34			
Предельные углеводороды	CP	OK 01 OK 02			
	P33	ЛР 4,16,23,30			
Тема 4.2.1 Непредельные и	УО	<i>Y1, Y2, Y3, Y4, Y5, Y6,</i>			
ароматические	ПР №8	3 1, 32, 33, 34			
углеводороды	ПР №9	OK 01 OK 02			
	CP	ПК 2.1.			
	P33	ЛР 4,16,23,30			
Тема 4.2.2 Спирты и	УО	<i>Y1, Y2, Y3, Y4, Y5, Y6,</i>			
фенолы. Альдегиды и	ПР №10	3 1, 32, 33, 34			
кетоны	CP	OK 01 OK 02			
	P33	ЛР 4,16,23,30			
Тема 4.2.3 Карбоновые	УО	<i>V1, V2, V3, V4, V5, V6,</i>			
кислоты и сложные эфиры	ПР №11	3 1, 32, 33, 34			
	CP	OK 01 OK 02			
	P33	ПК 2.1.			
		ЛР 4,16,23,30			
Тема 4.2.4 Азотсодержащие	УО	<i>Y1, Y2, Y3, Y4, Y5, Y6,</i>			
соединения	ЛР №3	3 1, 32, 33, 34			
	CP	OK 01 OK 02			
	P33	OK 04			
		ЛР 4,16,23,30			
Тема 4.3 Органические	УО	<i>Y1</i> , <i>Y2</i> , <i>Y3</i> , <i>Y4</i> , <i>Y5</i> , <i>Y6</i> ,			
вещества в	ЛР №4	3 1, 32, 33, 34			
жизнедеятельности	CP	OK 01 OK 02			
человека.	P33	OK 04			
7 70		ЛР 4,16,23,30		7 1 1	**** *** ***
Раздел 5. Кинетические и	T	<i>V1</i> , <i>V2</i> , <i>V3</i> , <i>V4</i> , <i>V5</i> , <i>V6</i> ,		Дифференцирован-	<i>Y1, Y2, Y3, Y4,</i>
термохимические		3 1, 32, 33, 34		ный зачёт	<i>Y5, Y6,</i>
закономерности		OK 01 OK 02			3 1, 32, 33, 34
протекания химических		ЛР 4,16,23,30			OK 01 OK 02
реакций	УО	V1 V2 V2 V4 V5 V7			ЛР 4,16,23,30
Тема 5.1 Кинетические и	УO ПР №12	<i>Y1, Y2, Y3, Y4, Y5, Y6,</i>			
термохимические	IIF JVºI∠	3 1, 32, 33, 34]		

закономерности протекания	СР	OK 01 OK 02		
химических реакций	P33	ЛР 4,16,23,30		
Раздел 6. Дисперсные системы	T	<i>V1</i> , <i>V2</i> , <i>V3</i> , <i>V4</i> , <i>V5</i> , <i>V6</i> , <i>3</i> 1, 32, 33, 34	Дифференцированн ый зачёт	<i>Y1, Y2, Y3, Y4, Y5, Y6,</i>
		OK 01 OK 02 OK 04 ПК 2.1. ЛР 4,16,23,30	ви зичет	3 1, 32, 33, 34 OK 01, OK 02, OK 04 ПК 2.1. ЛР 4,16,23,30
Тема 6.1 Дисперсные	УО	<i>Y1</i> , <i>Y2</i> , <i>Y3</i> , <i>Y4</i> , <i>Y5</i> , <i>Y6</i> ,		
системы и факторы их	ΠP №13	3 1, 32, 33, 34		
устойчивости	ЛР №5 СР	ОК 01 ОК 02 ОК 04 ПК 2.1.		
	P33	ЛР 4,16,23,30		
	1 55	711 4,10,23,30		
Раздел 7. Качественные	УО	<i>Y1</i> , <i>Y2</i> , <i>Y3</i> , <i>Y4</i> , <i>Y5</i> , <i>Y6</i> ,	Дифференцированн	<i>У1, У2, У3, У4,</i>
реакции обнаружения	ПР №14	3 1, 32, 33, 34	ый зачёт	<i>Y5, Y6,</i>
неорганических и	CP	OK 01 OK 02		3 1, 32, 33, 34
органических веществ	P33	OK 07		OK 01, OK 02, OK
	T	ЛР 4,16,23,30		07
				ЛР 4,16,23,30
Раздел 8. Химия в быту и	T	<i>Y1, Y4, Y6,</i>	Дифференцированн	<i>Y1, Y4, Y6,</i>
производственной		3 1, 34	ый зачёт	31,34
деятельности человека		OK 01 OK 02 OK 07		OK 01 OK 02 OK 07
		ПК 2.1.		ПК 2.1.
		ЛР 4,16,23,30		ЛР 4,16,23,30
Тема 8.1 Химия в быту и на	УО	<i>У1, У4, У6,</i>		
производстве.	CP	3 1, 34		
	P33	OK 01 OK 02 OK 07		
		ПК 2.1.		
		ЛР 4,16,23,30		

4. ЗАДАНИЯ ДЛЯ ОЦЕНКИ ОСВОЕНИЯ ДИСЦИПЛИНЫ (ПРЕДМЕТА)

4.1. Темы эссе (рефератов, докладов, сообщений)

- 1. Нанотехнология как приоритетное направление развития науки и производства в Российской Федерации.
 - 2. Радиоактивность. Использование радиоактивных изотопов в технических целях.
 - 3. Рентгеновское излучение и его использование в технике и медицине.
 - 4. История развития химической науки в России.
 - 5. Великие химики России.
 - 6. Жизнь и деятельность Д.И. Менделеева.
- 7. Практическое применение электролиза: рафинирование, гальванопластика, гальваностегия.
 - 8. Аморфные вещества в природе, технике, быту.
 - 9. Плазма четвертое состояние вещества.
- 10. Грубодисперсные системы, их классификация и использование в профессиональной деятельности.
 - 11. Применение суспензий и эмульсий в строительстве.
 - 12. Применение неметаллов в железнодорожном хозяйстве.
 - 13. Правила перевозки неметаллов по железной дороге.
 - 14. Жизнь и деятельность А. Кекуле.
 - 15. Жизнь и деятельность Й. Берцелиуса.
 - 16. Жизнь и деятельность Ф. Веллера.
 - 17. Жизнь и деятельность А.М. Бутлерова.
 - 18. Жизнь и деятельность В.В. Марковникова.
 - 19. Экологические аспекты использования углеводородного сырья.
 - 20. Химия углеводородного сырья и моя будущая специальность.
- 21. Применение ацетилена и его гомологов на предприятиях железнодорожного транспорта.
- 22. Практическое значение одноатомных спиртов в железнодорожном хозяйстве.
 - 23. Перевозка спиртов по железной дороге, маркировка грузов.
 - 24. Метанол: хемофилия и хемофобия.
 - 25. Этанол: величайшее благо и страшное зло.
 - 26. Алкоголизм и его профилактика.
- 27. Практическое значение многоатомных спиртов в железнодорожном хозяйстве.
 - 28. Перевозка ароматических спиртов по железной дороге, маркировка грузов.
 - 29. Муравьиная кислота в природе, науке и производстве.
 - 30. История уксуса.
- 31. Практическое значение альдегидов и их производных в железнодорожном хозяйстве.
 - 32. Перевозка альдегидов по железной дороге, маркировка грузов.
- 33. Практическое значение карбоновых кислот и их производных в железнодорожном хозяйстве.
 - 34. Перевозка карбоновых кислот по железной дороге, маркировка грузов.
 - 35. Сложные эфиры и их значение в природе, быту и производстве.
 - 36. Жиры как продукт питания и химическое сырье.
 - 37. Замена жиров в технике непищевым сырьем.

- 38. Нехватка продовольствия как глобальная проблема человечества и пути ее решения.
 - 39. Мыла: прошлое, настоящее, будущее.
- 40. Средства гигиены на основе кислородсодержащих органических соединений.
 - 41. Синтетические моющие средства (СМС): достоинства и недостатки.
 - 42. Жизнь и деятельность Н.Н. Зинина.
 - 43. Анилиновые красители.
- 44. Практическое значение аминов и их производных в железнодорожном хозяйстве.
 - 45. Перевозка аминов по железной дороге, маркировка грузов.
- 46. Значение аминокапроновой и аминоэнантовой кислот для объектов железнодорожного транспорта.
 - 47. Биосинтез белков.
 - 48. Химические волокна и их применение на железнодорожном транспорте.
 - 49. Углеводы и их роль в живой природе.
 - 50. Развитие сахарной промышленности в России.
- 51. Важнейшие строительные материалы, конструкционные материалы, краски, стекло, керамика, материалы для электроники, применяемые в железнодорожном хозяйстве
- 52. Растворы, используемые в бытовой, производственной деятельности человека.
 - 53. Растворы, применяемые в железнодорожном хозяйстве.

Контролируемые компетенции ОК 01 ОК 02 ОК 04 ОК 07, ПК 2.1.

Контроль выполнения данного вида самостоятельной работы осуществляется во время учебного занятия в виде проверки преподавателем письменного эссе (реферата, доклада, сообщения) или устного выступления обучающегося.

Критерии оценки:

- «5» баллов выставляется обучающемуся, если тема раскрыта всесторонне; материал подобран актуальный, изложен логично и последовательно; материал достаточно иллюстрирован достоверными примерами; презентация выстроена в соответствии с текстом выступления, аргументация и система доказательств корректны.
- «4» баллов выставляется обучающемуся, если тема раскрыта всесторонне; имеются неточности в терминологии и изложении, не искажающие содержание темы; материал подобран актуальный, но изложен с нарушением последовательности; недостаточно достоверных примеров.
- «3» баллов выставляется обучающемуся, если тема сообщения соответствует содержанию, но раскрыта не полностью; имеются серьёзные ошибки в терминологии и изложении, частично искажающие смысл содержания учебного материала; материал изложен непоследовательно и нелогично; недостаточно достоверных примеров.
- «2» баллов выставляется обучающемуся, если тема не соответствует содержанию, не раскрыта; подобран недостоверный материал; грубые ошибки в терминологии и изложении, полностью искажающие смысл содержания учебного материала; информация изложена нелогично; выводы неверные или отсутствуют.

4.2. Вопросы для устного опроса

- 1. Что является предметом изучения химии?
- 2. Какие частицы называют атомы и молекулы?
- 3. Охарактеризуйте явления аллотропии. Какие факторы его вызывают.
- 4. Какое вещество называют сложным?
- 5. Что показывает химическая формула?
- 6. Охарактеризуйте понятия «относительная атомная масса химического
- 7. элемента», «относительная молекулярная масса вещества»
- 8. Сформулируйте закон сохранения массы веществ.
- 9. Сформулируйте закон постоянства состава вещества. Является ли этот закон
- 10. универсальным для всех веществ?
- 11. Сформулируйте закон Авогадро. Какие следствия из этого закона имеют важное
 - 12. значение для химических расчетов?
 - 13. Сформулируйте периодический закон.
- 14. Что такое период? Что показывает номер периода. Какие периоды вы знаете?
- 15. Что такое группа? Что показывает номер группы. Какие подгруппы вы знаете?
 - 16. Что показывает порядковый номер?
- 17. Как устроено атомное ядро? Что такое изотопы? Почему свойства различных
 - 18. изотопов одного и того же элемента идентичны, хотя их относительные
 - 19. атомные массы различны?
 - 20. Охарактеризуйте понятие «ионная связь». Каков механизм его образования?
- 21. Охарактеризуйте понятия «катионы» и «анионы». Какие группы катионов и анионов вы знаете?
- 22. Какими физическими свойствами характеризуются вещества с ионными кристаллическими решетками?
- 23. Какую химическую связь называют ковалентной? Какие признаки учитывают при классификации ковалентных связей?
 - 24. Каковы механизмы образования ковалентной связи?
 - 25. Какими особенностями характеризуется строение атомов металлов?
- 26. Охарактеризуйте понятие «металлическая связь». Что сближает эту связь с ионной и ковалентной связями?
 - 27. Что представляет собой металлическая кристаллическая решетка?
- 28. Что такое смесь? Какие типы смесей различают по агрегатному состоянию образующих их веществ?
 - 29. Какие типы смесей различают по признаку однородности?
- 30. Охарактеризуйте понятие «дисперсная система». Чем дисперсная система отличается от остальных смесей?
 - 31. Какие системы называют грубодисперсными? На какие группы они делятся?
 - 32. Какой признак лежит в основе такой классификации?
 - 33. Какими дисперсными системами вы сталкиваетесь на производственной
 - 34. практике и будет иметь дело в профессиональной деятельности?
 - 35. Какие смеси называют растворами?
 - 36. Какие типы растворов вы знаете?
- 37. Охарактеризуйте понятие «растворимость вещества в воде». В каких едининах
 - 38. выражается растворимость?
- 39. Какие факторы влияют на растворимость в воде газов, жидкостей и твердых веществ?

- 40. Какие вещества называют электролитами и неэлектролитами?
- 41. Какую роль играет вода в процессе электролитической диссоциации?
- 42. Охарактеризуйте понятие «степень электролитической диссоциации» На какие группы делятся электролиты по степени диссоциации?
- 43. Дайте определения кислотам из их состава и сточки зрения теории электролитической диссоциации.
 - 44. На какие группы делят кислоты?
 - 45. Как определить наличие кислоты в продуктах питания?
- 46. Дайте определения основаниям исходя из их состава и с точки зрения теории электролитической диссоциации?
 - 47. На какие группы делят основания?
- 48. Дайте определение солям исходя из состава этих соединений. Для какой группы
 - 49. солей это определение справедливо?
- 50. Как классифицируют соли? Что общего между основными и кислыми солями. Что их отличает?
 - 51. Какие соли используют на производстве вашего профиля? С какой целью?
 - 52. Какой процесс называют гидролизом? Какие типы гидролиза вы знаете?
- 53. Что представляет собой соль как продукт реакции обмена и продукт реакции замещения?
- 54. Какие аспекты вашей профессиональной деятельности требует знания о pH? Обоснуйте ответ?
 - 55. Какие вещества называют оксидами?
 - 56. Как классифицируют оксиды? Как оксиды называются несолеобразующими?
 - 57. Какие оксиды называют солеобразующими?
 - 58. Какие оксиды называют основными, кислотными, амфотерными? Какие
 - 59. элементы образуют эти оксиды?
- 60. Как классифицируют химические реакции по числу и составу реагирующих веществ? Привести примеры реакций каждого типа. Реакции какого типа всегда являются окислительно-восстановительными?
- 61. Какое вещество называют катализатором? Какие явления называют катализом?
- 62. Как в вашей будущей профессии используется теплота, выделяющаяся при протекании экзотермических реакций?
- 63. Охарактеризуйте понятие «скорость химической реакции». В каких единицах измеряется и от каких факторов зависит скорость химической реакции?
- 64. Какие реакции называют необратимыми? Приведите примеры таких реакций и напишите их уравнения?
- 65. Какие реакции называют обратимыми? В чем заключается химическое равновесие? Как его сместить?
- 66. Сформулируйте принцип Ле-Шателье. Рассмотрите влияние каждого фактора на смещение химического равновесие?
 - 67. Физические и химические свойства металлов?
- 68. В чем заключается коррозия металлов? Какие типы и виды коррозии различают?
 - 69. Виды защиты металлов от коррозии.
 - 70. Какие виды получения металлов вы знаете?
 - 71. Какие особенности строения отличаются атомы и кристаллы неметаллов?
- 72. Какими свойствами-окислительными или восстановительными-характеризуются неметаллы?
 - 73. Охарактеризуйте восстановительные свойства неметаллов
 - 74. Охарактеризуйте окислительные свойства неметаллов?

- 75. Какие вещества называют органическими?
- 76. Сформулируйте и поясните основные положения теории химического строения А.М. Бутлерова.
- 77. Какие признаки положены в основу классификации органических соединений?
- 78. Какую группу атомов называют функциональной? Какие функциональные группы вам известны?
 - 79. Назовите основные типы реакции в неорганической и органической химии.
 - 80. Какие реакции называют реакциями дегидрирования?
 - 81. Какие углеводороды называются предельными? Общая формула.
 - 82. Что такое гомологический ряд? Перечислить гомологический ряд алканов.
 - 83. Какие реакции называются реакциями полимеризации?
 - 84. Какие реакции называют реакциями гидратации, дегидратации?
 - 85. Какие реакции называются непредельными? Общая формула алкенов.
- 86. Что общего и в чем различия между реакциями присоединений с участием алкенов
- 87. и диеновых углеводородов? Ответ подтвердите уравнения химических реакций.
 - 88. Сравните общие формулы диеновых и ацетиленовых углеводородов.
- 89. Сравните химические свойства этилена и ацетилена. Какие общие черты и различия вы можете отметить? Ответ подтвердите уравнениями химических реакции.
 - 90. Какие углеводороды называют ароматическими (арены)? Приведите пример.
 - 91. Каким пламенем горит бензол?
- 92. Какие спирты относятся к предельным одноатомным? Как формируют их названия? Какие виды изомерии характерны для них?
- 93. К наступлению холодов в клеточной жидкости насекомых и некоторых земноводных резко увеличивается содержание глицерина. Объясните этот природный факт.
 - 94. Какой спирт в технике называют денатуратом? Где его используют?
- 95. Назовите области использования технического этилового спирта, этиленгликоля и глицерина в условиях учебной практики и в вашей будущей профессиональной деятельности?
- 96. Как взаимное влияние фенильного радикала и гидроксильной группы отражается
 - 97. на свойствах фенола?
- 98. Фенол используется при производстве многочисленных полимерных материалов.
- 99. Какие правила техники безопасности должны соблюдаться при работе с этим веществом? Почему?
- 100. Какие вещества называются альдегидами? Какие виды изомерии, характерны для альдегидов.?
 - 101. Какие свойства формальдегида лежит в основе его применения?
 - 102. Чем отличаются реакции полимеризации от реакций поликонденсации?
- 103. Какие примерные материалы на основе формальдегидных смол используют на производстве, связанном с вашей профессиональной деятельностью?
 - 104. Какие вещества называются карбоновыми кислотами?
 - 105. Сравнить свойства соляной и уксусной кислот.
- 106. Что представляют собой сложные эфиры? Как называются реакции их получения?
- 107. Какие вещества называются углеводами? На какие группы они делятся? Какой признак положен на основу этой классификации?
 - 108. Почему глюкоза называется альдегидоспиртом?
 - 109. Моносахариды-сравнить строение глюкозы и фруктозы?

- 110. Какие вещества способны проявлять двойственную функцию?
- 111. Сравнить крахмал и целлюлозу по их происхождению, свойствам и значению для
 - 112. растительного организма?
- 113. Какие вещества называются аминами? Какую функциональную группу они содержат?
 - 114. Почему амины называются органическими основаниями?
- 115. Как свойства анилина подтверждают положение теории химического строения о взаимном влиянии атомов в молекуле?
 - 116. Где используются анилиновые красители?
- 117. Какие органические вещества называются аминокислотами? Можно ли их назвать соединениями с двойственной функцией?
 - 118. В чем проявляется амфотерный характер аминокислот?
- 119. Какие аминокислоты могут служить сырьем для получения синтетических волокон? Какие особенности строения таких аминокислот должны отличить их от родственных соединений
- 120. Что представляют собой белки? Дайте характеристику каждой из трех структур белковых молекул.
 - 121. Охарактеризуйте биологическую роль белка.
- 122. Укажите какие основные химические реакции лежат в основе синтеза полимеров.
 - 123. Приведите примеры реакций полимеризации и поликонденсации.

124.

Приведите примеры природных высокомолекулярных соединений растительного и животного происхождения

125. Какие химические вещества и для чего мы используем дома?

Контролируемые компетенции ОК 01 ОК 02 ОК 04 ОК 07, ПК 2.1.

Критерии оценки:

Оценка «5»: ответ полный и правильный на основании изученных теорий; материал изложен в определенной логической последовательности, литературным языком; ответ самостоятельный.

Оценка «4»: ответ полный и правильный на сновании изученных теорий; материал изложен в определенной логической последовательности, при этом - допущены две-три несущественные ошибки, исправленные по требованию учителя.

Оценка «3»: ответ полный, но при этом допущена существенная ошибка или ответ неполный, несвязный.

Оценка «2»: при ответе обнаружено непонимание учащимся основного содержания учебного материала или допущены существенные ошибки, которые обучающийся не может исправить при наводящих вопросах учителя, отсутствие ответа.

4.3. Тестовые задания

Раздел 1. Теоретические основы химии

Тест 1. (1-вариант)

Вопрос № 1. Какая формулировка Периодического закона является современной?

- Свойства химических элементов, а также формы и свойства их соединений находятся в периодической зависимости от величины их атомной массы.
- Свойства химических элементов, а также формы и свойства образуемых ими простых веществ и соединений находятся в периодической зависимости от величины зарядов их атомных ядер.

Вопрос № 2. Как определяется место химического элемента в периодической системе Д.И. Менделеева?

- а) количеством электронов на внешнем уровне
- b) количеством нейтронов в ядре
- с) зарядом ядра атома
- d) атомной массой

Вопрос № 3. Что показывает номер периода?

- а) число валентных электронов
- b) число нейтронов
- с) число энергетических уровней
- d) число электронов на внешнем энергетическом уровне

Вопрос № 4. Как определить число энергетических уровней в атоме элемента?

- а) по порядковому номеру элемента
- b) по номеру группы
- с) по номеру ряда
- d) по номеру периода

Вопрос № 5. Какой элемент возглавляет главную подгруппу шестой группы? а ванадий

- b) кислород
- с) фосфор
- d) мышьяк

Вопрос № 6. Какой элемент возглавляет главную подгруппу пятой группы?

- а) ванадий
- b) азот
- с) фосфор
- d) мышьяк

Вопрос № 7. Укажите элемент, возглавляющий большой период периодической системы элементов:

- a) Cu (№29)
- b) Ag (№47)
- c) Rb (№37)
- d) Au (№79)

Вопрос № 8. Сколько химических элементов в четвертом периоде:

- a)8 b)18 c) 30

Вопрос № 9. Какое число валентных электронов у атома кремния? a) 1 b)2 c) 3 d) 4 Вопрос № 10. Какое число валентных электронов у атома кальция? a) 1 b) 2 c) 8 d) 10 Вопрос № 11. Сколько энергетических уровней у атома хрома? b) 2 c) 3 d) 4 Вопрос № 12. Сколько энергетических уровней у атома скандия? a) 1 b) 2 c) 3 d) 4 Вопрос № 13. Атомы натрия и магния имеют: а) одинаковое число электронов b) одинаковое число электронных уровней с) одинаковую степень окисления в оксидах d) одинаковое число протонов в ядрах Тест 2. (2-вариант) Вопрос № 1. Атомы углерода и кремния имеют: а) одинаковое число электронных уровней b) одинаковые радиусы с) одинаковое число электронов на внешнем электронном уровне d) одинаковое число протонов в ядре **Вопрос № 2.** Определите какой это элемент $1s^22s^22p^1$: a) №1 b) №3 c) №5 d) №7 **Вопрос № 3.** Определите какой это элемент $1s^22s^22p^3$: a) №1 b) №3 c) №5 d) №7 Вопрос № 4. На основании электронной формулы определите, какими свойствами обладает элемент $1s^22s^22p^5$: а) металл

- b) неметалл
- с) амфотерный элемент
- d) инертный элемент

Вопрос № 5. Распределению электронов по энергетическим уровням в атоме элемента соответствует ряд чисел: 2, 8, 18, 6. В периодической системе этот элемент расположен в группе:

- a) V A
- b) VI A
- c) V **b**
- d) VIБ

Вопрос № 6. На внешнем электронном уровне два электрона имеют атомы:

- а) серы и кислорода
- b) фосфора и азота
- с) магния и кальция
- d) бария и натрия

Вопрос № 7. В ряду химических элементов $Si \to P \to S \to Cl$ неметаллические свойства:

- а) ослабевают
- b) усиливаются
- с) не изменяются
- d) изменяются периодически

Вопрос № 8. В ряду химических элементов Li ightarrow Ве ightarrow В ightarrow С металлические свойства:

- а) не изменяются
- b) усиливаются
- с) ослабевают
- d) изменяются периодически

Вопрос № 9. У какого элемента наиболее выражены неметаллические свойства?

- а) фосфор
- b) азот
- с) мышьяк

Вопрос № 10. Среди химических элементов Li, Na, K, Cs наиболее ярко свойства металла выражены у:

- а) лития
- b) натрия
- с) калия
- d) цезия

Вопрос № 11. У какого элемента наиболее выражены неметаллические свойства?

- а) кислород
- b) cepa
- с) селен
- d) теллур

Вопрос № 12. Какой из высших оксидов относится к оксиду, образованному элементом пятой группы?

a) RO₃

- b) R₂O₅
- c) RO₂
- $d)R_2O$

Вопрос № 13. Какой из высших оксидов относится к оксиду, образованному элементом четвертой группы?

- a) RO₃
- b) R₂O₅
- c) RO₂
- d) R₂O
- e) R₂O₃

Контролируемые компетенции: ОК 01, ОК 02, ОК 04, ОК 07, ПК 2.1.

Ключи к тестам

Раздел 1. Теоретические основы химии.

1 – вариант

№ Правильный ответ 1. b 2. c 3. c 4. d	
2. c 3. c	
3. c	
4. d	
5. b	
6. b	
7. c	
8. b	
9. d	
10. b	
11. d	
12. d	
13. b	

2 – вариант

№ вопроса	Правильный ответ
1.	c
2.	c
3.	d
4.	b
5.	b
6.	С
7.	b
8.	c
9.	b
10.	a
11.	d
12.	b
13.	С

Критерии оценки:

< 5> - от 86% до 100% правильных ответов.

«4» – от 76% до 85% правильных ответов.

 \ll **3**» – от 61% до 75% правильных ответов.

«2» – менее 61% правильных ответов.

Раздел 2. Химические реакции

Тест 1. (1-вариант)

Вопрос № 1. Какое из приведенных уравнений изображает реакцию окисления – восстановления:

- a) $KOH + HCl = KCl + H_2O$;
- b) $CaCO_3 = CaO + CO_2$
- c) $2HgO = 2Hg + O_2$;
- d) $Na_2CO_3 + 2HCl = 2NaCl + CO_2 + H_2O$.

Вопрос № 2. Какая из приведенных схем относится к реакции замещения:

- a) Fe + O_2 = ?
- b) Fe + HCl = ?
- c) Fe + $Cl_2 = ?$
- d) $FeCl_2 + AgNO_3 = ?$

Вопрос № 3. Какая из схем относится к реакциям соединения:

- a) $KOH + HC1 \longrightarrow ?$;
- b) $Na_2CO_3 + H_2SO_4 \longrightarrow ?$;
- c) $CaCO_3 \rightarrow ?$;
- d) $CaO + H_2O \longrightarrow ?$.

Вопрос № 4. Какая из следующих реакций – реакция замещения?

- a) Fe + CuCl₂ \longrightarrow FeCl₂+Cu;
- b) $(CuOH)_2CO_3 \rightarrow 2CuO + H_2O + CO_2$;
- c) $2Mg + O_2 \longrightarrow 2MgO$;
- d) $NaOH + HNO_3 \longrightarrow NaNO_3$.

Вопрос № 5. В какой из следующих реакций водород служит окислителем?

- a) $2H_2O + O_2 = 2H_2O$;
- b) $H_2 + CuO = Cu + H_2O$;
- c) $H_2 + 2Na = 2NaH$.

Вопрос № 6. В какой из реакции получается нерастворимое основание:

- a) $K + H_2O \longrightarrow$
- b) BaO + $H_2O \longrightarrow$
- c) KOH + CuCl₂ \longrightarrow
- d) $Na_2CO_3 + Ba(OH)_2$

Вопрос № 7. Укажите уравнения реакции замещения:

- a) $Cu(OH)_2 + 2HCl = CuCl_2 + 2H_2O$
- b) $CuO + H_2 = Cu + H_2O$
- c) $CaCO_3 = CaO + CO_2$
- $d) SO_2 + H_2O = H_2SO_4$

Вопрос № 8. Уравнение реакции соединения:

- a) $Cu(OH)_2 + 2HCl = CuCl_2 + 2H_2O$;
- b) $CaCO_3 = CaO + CO_2$;
- c) $CuO + H_2 = Cu + H_2O$;
- d) $SO_2 + H_2O = H_2SO_4$.

Вопрос № 9. Из приведенных уравнений реакции реакцией ионного обмена является:

- a) $3Ca + 2H_2PO_4 = Ca_3(PO_4)_2 + 3H_2$;
- b) $3Ca(OH)_2 + 2H_3PO_4 = Ca_3(PO_4)_2 + 6H_2O$;
- c) $CaO + CO_2 = CaCO_3$;
- d) $Ca(OH)_2 + Ba(NO_3)_2 = Ca(NO_3)_2 + Ba(OH)_2$.

Вопрос № 10. Какое вещество содержит хлорид-ионы в водных растворах:

- а) нитрата калия;
- b) хлорида кальция;
- с) сульфата натрия.

Вопрос № 11. Сокращенным ионным уравнением $Ba^{2+} + SO^{2}$ можно выразить реакцию между:

- а) серной кислотой и оксидом бария;
- b) сульфатом натрия и нитратом бария;
- с) серной кислотой и карбонатом бария;
- d) карбонатом натрия и соляной кислотой.

Вопрос № 12. Какую реакцию относят к реакциям разложения:

- a) Fe+O₂ \longrightarrow
- b) Zn+HNO₃ →
- c) $Na_2O+CO_2 \longrightarrow$
- d) FeCO₃ \longrightarrow

Вопрос № 13. При диссоциации, каких веществ образуются сульфат ионы:

- a) H₂SO₄
- b) MgCl₂
- c) Na₂SO₃
- d) Ba(OH)₂

Вопрос № 14. Элемент, повышающий степень окисления в ходе окислительновосстановительной реакции, называют:

- а) Окислитель
- b) Восстановитель
- с) Изотоп
- d) Неметалл

Вопрос № 15. Высшая степень окисления элемента совпадает с:

- а) Номером периода
- b) Порядковым номером элемента
- с) Номером группы
- d) Нет правильного ответа

Тест 2. (2-вариант)

Вопрос № 1. Простые вещества металлы в окислительно-восстановительных реакциях проявляют:

- а) Окислительные свойства
- b) Восстановительные свойства
- с) Окислительно-восстановительную двойственность
- d) Все ответы верны

Вопрос № 2. Схема процесса окисления:

a) $Na^+ \rightarrow Na^{\circ}$

b) S
$$^{-2} \longrightarrow S^{+4}$$

c)
$$Fe^{+3} \rightarrow Fe^{0}$$

d)
$$S^{+6} \longrightarrow S^{+4}$$

Вопрос № 3. Схема процесса восстановления:

a)
$$N^{+5} \longrightarrow N^{+2}$$

b)
$$Fe^{+2} \longrightarrow Fe^{+3}$$

c)
$$2N^{-3} \rightarrow N_2$$

d)
$$S^{+4} \longrightarrow S^{+6}$$

Вопрос № 4. Только окислительные свойства за счёт атома хлора проявляет:

Вопрос № 5. Соединение железа играет роль восстановителя в реакции, схема которой:

a) FeCl₃+ KI
$$\rightarrow$$
 FeI₂ + I₂ + KCl

b)
$$Fe(OH)_2 + O_2 + H_2O \longrightarrow Fe(OH)_3$$

c) FeO + 2HCl
$$\rightarrow$$
 FeCl₂+ H₂O

d)
$$FeO + H_2 \longrightarrow Fe + H_2O$$

Вопрос № 6. Укажите коэффициент перед формулой восстановителя в уравнении $MnO_2 + HCl = MnCl_2 + Cl_2 + 2H_2O$:

- a) 2
- b) 3
- c) 4
- d) 1

Вопрос № 7. Чем является магний в реакции с соляной кислотой?

- а) Окислителем
- b) Восстановителем
- с) Катализатором
- d) Компонентом смеси

Вопрос № 8. Сумма всех коэффициентов в уравнении Al + HCl = AlCl₃ + H₂ равна:

- a) 15
- b) 13
- c) 12
- d) 10

Вопрос № 9. И окислителем и восстановителем в реакциях может быть следующее соединение серы:

- a) H₂SO₄
- b) SO₂
- c) SO₃

Вопрос № 10. Установите соответствие между атомом фосфора в формуле вещества и его окислительно-восстановительными свойствами, которые он может проявлять в составе Н₃РО₄:

- а) восстановитель
- b) окислитель
- с) восстановитель и окислитель в зависимости от реакции

Вопрос № 11. Для окислительно-восстановительной реакции H₂S+4Cl₂+ 4 H₂O → 8HCl + H₂SO₄ выберите верные схемы перехода электронов, которые нужно написать при составлении электронного балланса:

- a) S^{-2} $8e^- \rightarrow S^{+6}$
- b) $S^{+2} + 2e^{-} \rightarrow S^{0}$
- c) $Cl_2^{\circ} + 2e^{-} \rightarrow 2Cl^{-}$
- d) $Cl_2^{\circ} + 2e^{-} \rightarrow 2Cl^{+}$

Вопрос № 12. Нерастворимая соль образуется при сливании водных растворов:

- а) гидроксида калия и хлорида алюминия
- b) сульфата меди (II) и сульфида калия
- с) серной кислоты и гидроксида лития
- d) карбоната натрия и хлороводородной кислоты

Вопрос № 13. Сопоставьте молекулярные и сокращённые ионные уравнения:

- a) $2HNO_3+Ba(OH)_2 \rightarrow Ba(NO_3)_2 + 2H_2O$
- 1) $H^+ + OH^- \rightarrow H_2O$
- b) $FeSO_4 + 2NaOH \rightarrow Na_2SO_4 + Fe(OH)_2 \downarrow$
- 2) $H^+ + OH^- \rightarrow H_2O$
- c) $Na_2SO_3 + 2HI \rightarrow 2NaI + SO_2\uparrow + H_2O$
- 3) $Ca^{2+} + SO_4 \xrightarrow{2--} CaSO_4 \downarrow$
- d) KOH + HCl = KCl + H₂O
- 4) $Fe^{2+} + 2 OH^{-} \rightarrow Fe(OH)_{2} \downarrow$
- e) $CaCl_2 + Na_2SO_4 \rightarrow CaSO_4 \downarrow + 2NaCl$
- 5) $SO_3^{2-} + 2H^+ \rightarrow SO_2 \uparrow + H_2O$

Вопрос № 14. Какие уравнения реакций описываются одинаковыми сокращенными ионными уравнениями? (выбрать несколько вариантов ответов)

- a) $CuCl_2 + 2KOH \rightarrow$
- b) $CuCl_2 + H_2S \rightarrow$
- c) CuSO₄+ 2NaOH \rightarrow
- d) $Cu(OH)_2 + 2HCl \rightarrow$

Вопрос № **15.** Сокращенное ионное уравнение реакции $Cu^{2+} + S^{2-} = CuS \downarrow$ соответствует взаимодействию между:

- a) Cu(OH)₂ и H₂S
- b) CuCl₂ и Na₂S
- с) Cu₃(PO₄)₂ и Na₂S
- d) Cu(OH)2 и K2SO4

Контролируемые компетенции: ОК 01, ОК 02, ОК 04, ОК 07, ПК 2.1.

Ключи к тестам

Раздел 2. Химические реакции.

1 – вариант

I — вариант				
№ вопроса	Правильный ответ			
1.	c			
2.	b			
3.	d			
4.	a			
5.	С			
6.	d			
7.	b			
8.	d			
9.	b			
10.	b			
11.	b			
12.	d			
13.	a			
14.	b			
15.	С			

2 — вариант

2 Suprann	
№ вопроса	Правильный ответ
1.	b
2.	b
3.	a
4.	b
5.	b
6.	c
7.	b
8.	b
9.	b
10.	b
11.	a
12.	b
13.	a - 1
	b - 4
	c-5
	d-2
	e-3
14.	a
15.	b

Критерии оценки:

 \ll 5» – от 86% до 100% правильных ответов.

 \ll 4» – от 76% до 85% правильных ответов.

 \ll 3» – от 61% до 75% правильных ответов.

«2» – менее 61% правильных ответов.

Раздел 3. Строение и свойства неорганических веществ

Вопрос № 1. Ковалентная полярная связь образуется между атомами:

- а) неметаллов с одинаковой электроотрицательностью
- б) металлов и неметаллов
- в) неметаллов с разной электроотрицательностью
- г) металлов

Вопрос № 2. Наиболее электроотрицательным элементом является:

- а) хлор
- б) кислород
- в) фтор
- г) водород

Вопрос № 3. Ионную химическую связь имеют все вещества в ряду

- а) кислоты, щелочи, соли
- б) оксиды металлов, оксиды неметаллов, простые вещества газы
- в) соли, оксиды неметаллов, кислоты
- г) соли, щелочи, оксиды металлов

Вопрос № 4. При образовании ионной связи атомы металлов

а) отдают электроны и превращаются в отрицательные ионы

- б) отдают электроны и превращаются в положительные ионы
- в) принимают электроны и превращаются в положительные ионы
- г) принимают электроны и превращаются в отрицательные ионы

Вопрос № 5. Укажите неправильное утверждение

- а) Водородная связь присутствует в молекулах белков
- б) Водородная связь бывает межмолекулярной и внутримолекулярной
- в) Водородная связь прочная
- г) Водородная связь образуется между атомом водорода и сильно электроотрицательным атомом

Вопрос № 6. Вещество с ковалентной неполярной связью

- a) HCl
- б) H₂
- в) NaH
- г) H₂O

Вопрос № 7. Выберите формулу вещества с двойной химической связью

- a) S₂
- б) H₂
- $B) N_2$
- г) Cl₂

Вопрос № 8. В молекуле Na₂SO₄ присутствуют химические связи

- а) только ионная
- б) ковалентная полярная и неполярная
- в) ионная и ковалентная полярная
- г) ионная и ковалентная неполярная

Вопрос № 9. В соединении K₂S химическая связь

- а) ковалентная полярная
- б) ковалентная неполярная
- в) металлическая
- г) ионная

Вопрос № 10. В молекуле азота количество общих электронных пар

- а) одна
- б) три
- в) четыре
- г) две.

Вопрос № 11. Соотнесите:

название вещества:

- 1) хлорид калия
- 2) кислород
- 3) магний
- 4) хлорид железа (III)
- 5) оксид фосфора

тип связи:

- а) ионная
- б) ковалентная неполярная
- в) металлическая
- г) ковалентная полярная

Вопрос № 12. Соотнесите:

Название вещества:

- 1) хлороводород
- 2) медь
- 3) cepa

кристаллическая

- 4) фторид натрия
- 5) оксид углерода (II)

тип связи:

- а) ионная
- б) ковалентная неполярная
- в) металлическая
- г) ковалентная полярная

Контролируемые компетенции: ОК 01, ОК 02, ОК 04, ОК 07, ПК 2.1.

Ключи к тестам

Раздел 3. Строение и свойства неорганических веществ

1 – вариант

1 — вариант	
№ вопроса	Правильный ответ
1.	С
2.	С
3.	a
4.	a
5.	d
6.	a
7.	a
8.	С
9.	d
10.	b
11.	1,4-a
	2-b
	3-c
	5-d
12.	1,5-d
	2-c
	3-b
	4-a

Критерии оценки:

 \ll 5» – от 86% до 100% правильных ответов.

 \ll 4» – от 76% до 85% правильных ответов.

 \ll 3» – от 61% до 75% правильных ответов.

 $\langle 2 \rangle$ — менее 61% правильных ответов.

Раздел 4. Строение и свойства органических соединений

Тест 1. (1-вариант)

Вопрос № 1. Общая формула алканов:

- a) $C_n H_{2n+2}$
- b) C_nH_{2n}
- c) C_nH_{2n-2}

d) C_nH_{2n-6}

Вопрос № 2. При нормальных условиях пропан представляет собой:

- а) газ:
- b жидкость;
- с) твердое вещество

Вопрос № 3. С увеличением относительной молекулярной массы температура кипения *н*-алканов:

- а) увеличивается
- b) уменьшается
- с) не изменяется
- d) изменяется периодически

Вопрос № 4. Для алканов наиболее характерны реакции:

- а) присоединения
- b) радикального замещения
- с) полимеризации

Вопрос № **5.** С какими из перечисленных веществ при соответствующих условиях реагирует этан: 1) водород, 2) кислород, 3) хлор, 4) азот, 5) соляная кислота?

- a) 1, 2, 3
- b) 2, 3, 5
- c) 2, 4
- d) 2, 3

Вопрос № 6. Общая формула алкенов:

- a) C_nH_{2n+2}
- b) C_nH_{2n}
- c) C_nH_{2n-2}
- d) C_nH_{2n-6}

Вопрос № 7. Реакция присоединения водорода называется:

- а) гидрированием
- b) гидрогалогенированием
- с) гидратацией
- d) дегидрированием

Вопрос № 8. В реакции бромирования пропена образуется:

- а 1,3-дибромпропан
- b) 1-бромпропан
- с) 2-бромпропан
- d) 1,2-дибромпропан

Вопрос № 9. Гексен от гексана можно отличить с помощью:

- а) бромной воды
- b) раствора бромоводорода
- с) индикатора
- d) водного раствора серной кислоты

Вопрос № 10. Присоединение воды к алкенам называется реакцией:

а) гидрирования

- b) гидрогалогенирования
- с) гидратации
- d) дегидратации

Вопрос № 11. Качественные реакции на алкены:

- а) гидрирование
- b) окисление раствором перманганата калия
- с) гидратация
- d) гидротация

Вопрос № 12. Какая общая формула соответствует гомологическому ряду ароматических углеводородов

- a) C_nH_{2n}
- b) C_nH_{2n+2}
- c) C_nH_{2n-2}
- d) C_nH_{2n-6}

Вопрос № 13. Бензол при комнатной температуре является:

- а) Бесцветной жидкостью
- b) Твердым веществом
- с) Газом
- d) Плазмой

Вопрос № 14. Растворяется ли бензол в воде:

- а) Да
- b) Частично
- c) HeT
- d) При охлаждении

Вопрос № 15. Углеводороду следующего состава:

- а) Этилбензол
- b) Толуол
- с) Метилбензол
- d) Винилбензол

Вопрос № 16. Структурную формулу бензола предложил:

- а) И. Глаубер
- b) Ф. Кекуле
- с) М. Фарадей
- d) Э. Мичерлих

Вопрос № 17. Дополните фразу «Главным компонентом природного газа является ...»

- а) этан
- b) метан
- с) бутан
- d) бензол

Вопрос № 18. Дополните фразу «Попутный газ отличается от природного тем, что …» а) не отличается

- b) состоит из одинаковых соединений, но в разных объемных соотношениях
- с) содержит большое количество разных углеводородов
- d) не содержит метана.

Вопрос № 19. Дополните фразу «Нефть – это ...»

- а) чистое сложное вещество, состоящее из углерода и водорода
- b) смесь веществ, представляющая собой раствор газообразных и твердых углеводородов
- с) природная маслянистая горючая жидкость со специфическим запахом, состоящая в основном из сложной смеси углеводородов
 - d) смесь неорганических соединений.

Вопрос № 20. Дополните фразу «Из нефти получают...»

- а) бензин
- b) керосин
- с) бензин, керосин, лигроин
- d) лигроин, керосин, бензин, газойль, мазут и продукты их переработки
- е) все ответы неправильные.

Вопрос № 21. Дополните фразу «Процесс распада молекул сложных углеводородов до более простых под действием высокой температуры и катализатора называется…»

- а) крекингом
- b) термическим крекингом
- с) ректификационной перегонкой
- d) каталитическим крекингом.

Вопрос № 22. Дополните фразу «Нефть является

- а) экологически вредным веществом, т.к. отрицательно влияет на растения и животных, отравляя их за счет наличия в ней вредных веществ
 - b) экологически безвредным веществом
- с) экологически полезным веществом, т.к. содержит вещества необходимые для жизнедеятельности большинства организмов
 - d) полезным и вредным веществом в зависимости от условий.

Вопрос № 23. В состав молекулы спирта входит функциональная группа

- a) CHO;
 - б) COOH;
 - в) NH₂;
 - г) OH.

Вопрос № 24. Уберите «лишнее» вещество

- a) C₃H₇OH;
- b) C_2H_5OH ;
- c) CH₃COH;
- d) CH₃OH.

Вопрос № 25. С увеличением относительной молекулярной массы растворимость спиртов

- а) ухудшается;
- b) не изменяется;
- с) улучшается;
- d) изменяется.

Вопрос № 26. Реакция этерификации — это реакция взаимодействия между:

- а) спиртом и кислотой;
- b) альдегидом и кислородом;
- с) двумя одинаковыми спиртами;
- d) спиртом и основанием.

Вопрос № 27. Этанол НЕ реагирует с

- а) водой;
- b) гидроксидом меди (II);
- с) оксидом меди (II);
- d) кислородом.

Вопрос № 28. При нагревании выше 140 °С в присутствии H₂SO₄ из этанола получается:

- а) метан;
- b) этиленгликоль;
- с) этилен;
- d) ацетилен.

Вопрос № 29. Спирты имеют формулу:

- a) R-OH
- b) R-COOH
- c) R-NH₂

Вопрос № 30. Спирты – это:

- а) производные углеводородов, где один или несколько атомов водорода замещены на гидроксильные группы
- b) производные углеводородов, где один или несколько атомов водорода замещены на карбоксильные группы
- с) производные углеводородов, где один или несколько атомов водорода замещены на карбонильные группы

Вопрос № 31. К многоатомным спиртам относится:

- а) глицерин
- b) метиловый
- с) этиловый

Вопрос № 32. Метанол применяется для изготовления:

- а) пластмассы
- b) лекарств
- с) хлопчатобумажной ткани

Вопрос № 33. Этиленгликоль используется в качестве:

- а) антифриза
- b) машинного масла
- с) лекарственного вещества

Тест 2. (2-вариант)

Вопрос № 1. Глицерин:

- а) не ядовитый
- b) становится ядовитым при высоких температурах кипения
- с) очень ядовитый

Вопрос № 2. Качественной реакцией на глицерин является взаимодействие с:

- а) гидроксидом меди (II)
- b) гидроксидом натрия
- с) карбоновыми кислотами

Вопрос № 3. Сорбит используется в качестве:

- а) заменителя сахара
- b) кремов для смягчения кожи
- с) масла для смазывания двигателя

Вопрос № 4. На основе нитроглицерина изготавливают:

- а) динамит
- b) лавсан
- с) резину

Вопрос № 5. Образование «серебряного зеркала» в реакции с аммиачным раствором оксида серебра доказывает, что в молекуле вещества содержится

- а) карбоксильная группа
- b) двойная связь между атомами C и O
- с) альдегидная группа
- d) атом углерода в sp²-гибридном состоянии

Вопрос № 6. С помощью аммиачного раствора оксида серебра можно различить растворы

- а) метанола и этанола
- b) этанола и этаналя
- с) глицерина и этиленгликоля

Вопрос № 7. С гидроксидом меди (II) реагируют оба вещества

- а) глицерин и пропаналь
- b) ацетальдегид и этанол
- с) этанол и фенол
- d) фенол и формальдегид

Вопрос № 8. Состав карбоновых кислот отражает общая формула

- a) RCOOR
- b) RCOH
- c) ROH
- d) RCOOH

Вопрос № 9. Функциональная группа карбоновых кислот состоит из...

- а) карбонильной и аминогруппы
- b) гидроксильной и аминогруппы
- с) карбонильной и гидроксильной группы
- d) карбонильной и нитрогруппы

Вопрос № 10. В ходе реакции этерификации карбоновые кислоты реагируют

- а) с металлами
- b) с основаниями
- с) со спиртами
- d) с кислотами

Вопрос № 11. Где в природе можно встретить метановую кислоту?

- а) в корнях валерианы
- b) в прогоркшем масле
- с) в муравьях, в крапиве
- d) в молоке

Вопрос № 12. Назовите карбоновую кислоту С₃Н₇СООН

- а) капроновая
- b) уксусная
- с) пропионовая
- d) масляная

Вопрос № 13. Агрегатное состояние уксусной кислоты:

- а) газ
- b) жидкость
- с) твердое вещество

Вопрос № 14. С какими из перечисленных веществ вступают в реакции карбоновые кислоты:

- а) со спиртами в присутствии кислотного катализатора; b) металлическим натрием c) гидроксидом натрия d) металлическим серебром
 - a) a,
 - b) a, б
 - с) а, б, в
 - d) г

Вопрос № 15. Реакция, обратная реакции этерификации, называется реакцией

- а) нейтрализации
- b) дегидратации
- с) гидрирования
 - d) гидролиза

Вопрос № 16. Жиры — это сложные эфиры

- а) этанола и высших карбоновых кислот
- b) этиленгликоля и высших карбоновых кислот
- с) глицерина и высших карбоновых кислот
- d) глицерина и низших карбоновых кислот

Вопрос № 17. Взаимодействие жиров с растворами щелочей — это реакция

- а) этерификации
- b) окисления
- с) омыления
 - d) присоединения

Вопрос № 18. Мыло — это

- а) смесь стеариновой и пальмитиновой кислот
- b) натриевые и калиевые соли стеариновой и пальмитиновой кислот
- с) натриевые и калиевые соли олеиновой кислоты
- d) натриевые и калиевые соли уксусной кислоты

Вопрос № 19. Какой трехатомный спирт входит в состав жиров?

а) Глицерин

- b) Этиленгликоль
- с) Сорбит

Вопрос № 20. Выберите правильное утверждение:

- 1) сложные эфиры это производные карбоновых кислот, в которых атом водорода замещен на углеводородный радикал;
- 2) реакция получения сложных эфиров из карбоновых кислот и спиртов называется реакцией нейтрализации.
 - а) только 1
 - b) только 2
 - с) оба правильные
 - d) нет правильного ответа

Вопрос № 21. Среди представленных ниже характеристик выберите ту, которая относится к сложным эфирам с небольшой молекулярной массой:

- а) тяжелее воды
- b) имеют запахи фруктов
- с) хорошо растворимы в воде

Вопрос № 22. Название процесса получения сложных эфиров:

- а) гидрогенизация
- b) ароматизация
- с) гидратация
- d) этерификация

Вопрос № 23. Процесс превращения жидких жиров в твердые:

- а) гидрирование
- b) гидролиз
- с) гидратация
- d) галогенирование

Вопрос № 24. Укажите от чего зависит формирование жиров в рационе человека?

- а) характера трудовой деятельности
- b) режима питания
- с) ассортимента продуктов

Вопрос № 25. Функиональной группой аминов является

- a) COOH
- b) OH
- c) NH₂
- d) COH

Вопрос № 26. Приведите в соответствие формулу амина и его название

ФОРМУЛА НАЗВАНИЕ a) C₂H₅NHCH₃ 1) этиламин

b) CH₃NH(C₂H₅)₂
 c) C₂H₅NH₂
 d) пропилэтиламин
 3) метилэтиламин

d) C₆H₅NH₂ 4) анилин

5) метилдиэтиламин

Вопрос № 27. Амины являются органическим

а) кислотами

- b) основаниями
- с) солями
- d) амфотерными соединениями

Вопрос № 28. Функциональными группами аминокислот являются:

- a) COOH и NH_2
- b) OH
- c) COH

Вопрос № 29. Аминокислоты проявляют свойства

- а) кислотные
- b) основные
- с) амфотерные

Вопрос № 30. При взаимодействии аминокислот между собой не образуются

- а) дипептиды
- b) трипептиды
- с) сложные эфиры
- d) полипептиды

Вопрос № 31. Для получения аминокислот нельзя использовать реакции:

- а) гидролиза белков
- b) взаимодействия галогенопроизводных карбоновых кислот с аммиаком
- с) биотехнологический метод
- d) взаимодействие карбоновых кислот с аммиаком

Вопрос № 32. Аминокислоты не используются

- а) в медицине
- b) для производства красителей
- с) для синтеза белков
- d) в сельском хозяйстве.

Вопрос № 33. Сколько содержится альфа-аминокислот в человеческом организме:

- а) двадцать
- b) тридцать
- с) сорок пять
- d) не содержит

Контролируемые компетенции: ОК 01, ОК 02, ОК 04, ОК 07, ПК 2.1.

Ключи к тестам

Раздел 1. Теоретические основы химии.

1 – вариант

1 Supuann					
№	Правильный ответ				
вопроса					
1.	A				
2.	A				
3.	A				
4.	В				
5.	A				
6.	В				

2 – вариант

№ вопроса	Правильный ответ
1.	A
2.	A
3.	A
4.	A
5.	С
6.	b

7.	A
8. 9. 10. 11. 12. 13. 14 15 16 17	D A C
9.	A
10.	С
11.	В
12.	D
13.	D A A C
14	A
15	С
16	b
17	В
18	D
19	В
20	d
20 21 22 23 24 25	D
22	A
23	D
24	С
	A D C A
26	A
27	A
28 29	С
29	A
30	Ā
31	A C A A A A
32	A
33	A

7.	a
8.	d
9.	С
9. 10. 11. 12. 13.	С
11.	С
12.	D
13.	b
14	С
15	D
16	C C C D D C C C B A A A b
17	С
18	В
19	A
20	A
21	
22	D
23	D A A C
24	A
25	С
26	a-3
	b-5
	c-1 d-4
	d-4
27	b
28	a
29	C
30	С
31	d
32	b
33	a

Критерии оценки:

 \ll 5» – от 86% до 100% правильных ответов.

 \ll 4» – от 76% до 85% правильных ответов.

 \ll 3» – от 61% до 75% правильных ответов.

«2» – менее 61% правильных ответов.

Раздел 5. Кинетические и термохимические закономерности протекания химических реакций

Вопрос № 1. Реакция $2H_2O + 2Na = 2NaOH + H_2\uparrow + Q$ относится к реакциям:

- а) разложения, экзотермическим
- b) замещения, экзотермическим
- с) присоединения, эндотермическим
- d) обмена, эндотермическим

Вопрос № 2. Скорость прямой реакции $N_2 + 3H_2 \leftrightarrow 2NH_3 + Q$ возрастает при:

- а) увеличении концентрации азота
- b) уменьшении концентрации азота
- с) увеличении концентрации аммиака
- d) уменьшении концентрации водорода

Вопрос № 3. Равновесие в системе $N_2 + O_2 \leftrightarrow 2NO - Q$ будет смещаться в сторону продукта реакции при:

- а) понижении температуры
- b) увеличении давления
- с) уменьшении давления
- d) увеличении концентрации кислорода

Вопрос № 4. На состояние химического равновесия в системе $2SO_2 + O_2 \leftrightarrow 2SO_3 + Q$ не влияет:

- а) катализатор
- b) изменение концентрации исходных веществ
- с) изменение температуры
- d) изменение давления

Вопрос № 5. На скорость химической реакции между раствором серной кислоты и железом **не оказывает** влияния:

- а) концентрация кислоты
- b) увеличение давления
- с) температура реакции
- d) измельчение железа

Вопрос № 6. Для уменьшения скорости химической реакции необходимо:

- а) увеличить концентрацию реагирующих веществ
- b) ввести в систему катализатор
- с) понизить температуру
- d) повысить температуру

Вопрос № 7. Реакция получения аммиака N₂+ 3H₂ ↔ 2NH₃ является реакцией:

- а) замещения, каталитической, эндотермической
- b) соединения, каталитической, экзотермической
- с) окислительно-восстановительной, некаталитической, экзотермической
- d) обмена, некаталитической, эндотермической

Вопрос № 8. Установите соответствие между типом реакции и ее уравнением:

ТИП РЕАКЦИИ

УРАВНЕНИЕ РЕАКЦИИ

1) соединение

a) $2H_2O = 2H_2 + O_2$

2) разложение

b) $2Al + 3CuSO_4 = Al_2(SO_4)_3 + 3Cu$

3) замещение

c) $2SO_2 + O_2 \leftrightarrow 2SO_3$

4) обмен

d) $K_2SO_3 + 2HCl = 2KCl + SO_2 \uparrow + H_2O$

$$1 - c$$
; $2 - a$; $3 - b$; $4 - d$

Вопрос № 9. Для увеличения скорости химической реакции: $Mg(тв) + 2H^+ = Mg^{2+} + H_2(\Gamma)$ необходимо:

- а) добавить воды
- b) увеличить концентрацию ионов водорода
- с) уменьшить температуру
- d) увеличить концентрацию ионов магния

Вопрос № 10. С наибольшей скоростью при комнатной температуре протекает реакция:

- а) углерода с кислородом
- b) железа с раствором уксусной кислоты
- с) железа с соляной кислотой
- d) растворов гидроксида натрия и серной кислоты

Вопрос № 11. Если процессы перехода системы происходят при постоянстве давления системы, то они называются:

- а) изобарными;
- b) изохорными;
- с) изотермическими;
- d) изобарно-изотермическими.

Вопрос № 12. Если процессы перехода системы происходят при постоянстве температуры системы, то они называются:

- а) изобарными;
- b) изохорными;
- с) изотермическими;
- d изобарно-изотермическими.

Вопрос № 13. Если процессы перехода системы происходят при постоянстве объема системы, то они называются:

- а) изобарными;
- b) изохорными;
- с) изотермическими;
- d) изобарно-изотермическим

Вопрос № 14. Количественное соотношение между изменением внутренней энергии, теплотой и работой устанавливает:

- а) первый закон термодинамики;
- b) второй закон термодинамики;
- с) третий закон термодинамики.

Вопрос № 15. Термохимия — это:

- а) раздел химии, изучающий тепловые эффекты химических реакций и фазовых превращений;
 - b) раздел химии, изучающий кинетические закономерности реакции;
- с) раздел химии, изучающий таутомерные и изомерные превращения органических соединений;
 - d) раздел химии, изучающий неорганические кристаллы.

Вопрос № 16. Величина, характеризующая состояние термодинамического (теплового) равновесия макроскопической системы, — это:

- а) давление;
- b) температура;
- в) объем;
- с) концентрация.

Вопрос № 17. Раздел химии, изучающий процессы, протекающие под воздействием света, получил название:

- а) термохимия;
- b) фотохимия;
- с) физическая химия;
- d) неорганическая химия.

Вопрос № 18. Реакции, сопровождающиеся выделением теплоты, протекают более полно при:

- а) охлаждении;
- b) нагревании.

Вопрос № 19. Вещества, замедляющие химическую реакцию, – это:

- а) катализаторы;
- b) ингибиторы.

Вопрос № 20. Химическое равновесие – это состояние, при котором скорости прямой и обратной реакций равны. Что их перечисленного ниже не влияет на химическое равновесие?

- а) давление
- b) концентрация веществ
- с) присутствие катализатора
- d) температура

Вопрос № 21. Скорость химической реакции — это величина, которая показывает:

- а) изменение температуры за единицу времени
- b) изменение площади поверхности реагирующих веществ за единицу времени
- с) изменение давления за единицу времени
- d) изменение концентрации исходных веществ или продуктов реакции за единицу времени

Вопрос № 22. На скорость химической реакции не влияет изменение:

- а) концентрация исходных веществ
- b) концентрация продуктов реакции
- с) площади соприкосновения реагентов
- d) температуры и давления

Контролируемые компетенции: ОК 01, ОК 02, ОК 04, ОК 07, ПК 2.1.

Ключи к тестам

Раздел 5. Кинетические и термохимические закономерности протекания химических реакций

1 – вариант

1 — вариант					
№ вопроса	Правильный ответ				
î.	b				
2.	a				
2. 3. 4.	d				
	a				
5.	b				
6.	С				
7.	b				
8.	1 - c; 2 -a; 3 - b; 4 – d				
9.	b				
10.	d				
11.	a				
12.	С				
13.	b				
14	a				
15	a				
16	b				
17	b				
18	a				
19	b				
20	С				
21	d				
22	b				

Критерии оценки:

«5» – от 86% до 100% правильных ответов.

 \ll 4» – от 76% до 85% правильных ответов.

 \ll 3» – от 61% до 75% правильных ответов.

«2» – менее 61% правильных ответов.

Раздел 6. Качественные реакции обнаружения неорганических и органических веществ

Вопрос № 1. Реактивом для обнаружения непредельных соединений является

- а) аммиачный раствор оксида серебра
- b) соляная кислота
- с) свежеприготовленный Сu(OH)2
- d) бромная вода

Вопрос № 2. Реактивом для обнаружения многоатомных спиртов является

- а) свежеприготовленный Си(ОН)2
- b) соляная кислота
- с) аммиачный раствор оксида серебра

Вопрос № 3. Реактивом для обнаружения альдегидов является

- а) гидроксид натрия
- b) аммиачный раствор оксида серебра
- с) соляная кислота
- d) азотная кислота

Вопрос № 4. Верны ли следующие суждения?

- А. С помощью аммиачного раствора оксида серебра можно различить бутаналь и бутанол.
- Б. Гидроксид меди(II) может быть использован для обнаружения глицерина.
- а) верно только А
- b) верно только Б
- с) верны оба суждения
- d) оба суждения неверны

Вопрос № 5. Верны ли следующие суждения?

- А. Фенол можно отличить от этанола с помощью бромной воды.
- Б. Реакцию "серебряного зеркала" дают и глюкоза, и метановая кислота.
- а) верно только А
- b) верно только Б
- с) верны оба суждения
- d) оба суждения неверны

Вопрос № 6. Верны ли следующие суждения?

- А. Раствор перманганата калия не обесцвечивается при пропускании через него пропана.
- Б. Бромную воду можно использовать, чтобы отличить этилен от пропилена.
- а) верно только А
- b) верно только Б
- с) верны оба суждения
- d) оба суждения неверны

Вопрос № 7. Реактивом для обнаружения крахмала является

- а) гидроксид натрия
- b) раствор йода
- с) аммиачный раствор оксида серебра
- d) соляная кислота

Вопрос № 8. Верны ли следующие суждения?

А. С помощы глицерин.	ю свежеприготовленного ги	дроксида меди(II) нельзя	я различить пропаналь и

- Б. Аммиачный раствор оксида серебра не может быть использован для того, чтобы различить растворы уксусной и муравьиной кислот.
 - а) верно только А
 - b) верно только Б
 - с) верны оба суждения
 - d) оба суждения неверны

Вопрос № 9. Установите соответствие между двумя веществами и реактивом, с помощью которого можно различить растворы этих веществ.

ВЕЩЕСТВА	РЕАКТИВЫ
ВЕЩЕСТВА	I LAKTIDDI

- а) пропан и пропен
- b) этановая кислота и метановая кислота
- с) бензол и фенол

- 1) хлорид железа (III) FeCl₃
- 2) аммиачный раствор Ag2O
- 3) бромная вода

Вопрос № 10. Установите соответствие между двумя веществами и реактивом, с помощью которого можно различить растворы этих веществ.

РЕАКТИВЫ

ВЕЩЕСТВА

- а) этанол и этилен гликоль
- 1) бромная вода 2) раствор гидроксида меди(II)

- b) бутанол и глицерин
- с) этан и этилен
- d) пальмитиновая и олеиновая

кислота

Вопрос № 11. Установите соответствие между веществами и признаком протекающей между ними реакции.

ПРИЗНАК РЕАКЦИИ

ВЕЩЕСТВА

- а) глицерин и гидроксид меди(II)
- b) фенол и бромная вода
- с) уксусная кислота и гидроксид
- меди(II)
 - d) этаналь и гидроксид меди(II)
 - е) уксусная кислота и карбонат
- 1) белый осадок
- 2) появление синего раствора
- 3) появление красного осадка
- 4) выделение газа
- 5) растворение осадка

натрия

Контролируемые компетенции: ОК 01, ОК 02, ОК 04, ОК 07, ПК 2.1.

Ключи к тестам

Раздел 7. Качественные реакции обнаружения неорганических и органических веществ

№ вопроса	Правильный ответ
1.	d
2.	a
3.	b
4.	c
5.	С
6.	a

1 — вариант

7.	b
8.	b
9.	a-3,b -2, c - 1
10.	a-2, b-2, c -1, d-1
11.	A -2, b -1, c-5, d- 3, e-4

Критерии оценки:

 \ll 5» – от 86% до 100% правильных ответов.

«4» – от 76% до 85% правильных ответов.

«3» – от 61% до 75% правильных ответов.

«2» – менее 61% правильных ответов.

Раздел 8. Химия в быту и производственной деятельности человека

Вопрос № 1. Как называется раздел химии, изучающий метаболизм и действие отдельных веществ на организм человека?

- а) нанохимия
- b) нейрохимия
- с) медицинская химия
- d) химия полимеров

Вопрос № 2. Какие главные вещества используются для производства зубной пасты?

- а) песок и сода
- b) глицерин и щелочь
- с) ПАВ и ферменты
- d) металлы и водород

Вопрос № 3. Что используется для изготовления чистящих веществ

- а) металлы, водород, ферменты
- b) песок, сода, щелочь, ПАВ
- с) воск, глицерин, эфирные масла
- d) сульфаты, щелочь, глицерин, ПАВ

Вопрос № 4. Какие вещества являются ароматизаторами в пищевой промышленности?

- а) сложные эфиры
- b) лимонная кислота
- с) сульфаты
- d) одноатомные спирты

Вопрос № 5. Кому принадлежат слова «Широко распростирает химия руки свои в дела *человеческие…*»?

- а) Пушкину
- b) Менделееву
- с) Ломоносову

Вопрос № 6. Какой газ применяется в приготовлении газированных шипучих напитков?

- а) азот
- b) углекислый газ
- с) кислород

Вопрос № 7. Кислотные дожди обусловлены:

- а) действием фреонов
- b) внесением удобрений
- с) выбросом кислот
- d) выбросами химических предприятий

Вопрос № 8. Продукт химического производства это:

- а) целлюлоза
- b) хитин
- с) полиэтилен
- d) крахмал

Вопрос № 9. Соли высших жирных кислот с числом углеродных атомов С10-С18 —

а) мыла;

- b) белки;
- с) витамины;
- d) основания.

Вопрос № 10. Что используется в качестве топлива?

- а) Глицерин
- b) Метан
- с) Сложные эфиры

Вопрос № 11. Какие вещества являются ароматизаторами в пищевой промышленности?

- а) Одноатомные спирты
- b) Сульфаты
- с) Сложные эфиры

Вопрос № 12. Плёнку для парников изготавливают из

- а) полиэтилена
- b) поливинилхлорида
- с) целлофана
- d) нитроцеллюлозы

Вопрос № 13. Синтетический каучук получают из

- а) хлорэтена
- b) бутена
- с) бутина
- d) 2-хлорбутадиена-1,3

Вопрос № 14. Экологически чистым топливом является

- а) водород
- b) нефть
- с) каменный уголь
- d) природный газ

Вопрос № 15. Наиболее токсичным веществом, вызывающим нарушения функций кровеносной и нервной систем, иногда слепоту и даже смерть, является

- а) метанол
- b) дистиллированная вода
- c) caxap
- d) поваренная соль

Вопрос № 16. Какие меры предосторожности следует соблюдать при работе с ядовитыми веществами и легкоиспаряющимися жидкостями?

- а) использовать очки, резиновые перчатки, респиратор
- b) определять запах по следам жидкости на пробке
- с) надевать защитный синтетический халат или фартук

Контролируемые компетенции: ОК 01, ОК 02, ОК 04, ОК 07, ПК 2.1.

Ключи к тестам

Раздел 8. Химия в быту и производственной деятельности человека

1 – вариант

№ вопроса	Правильный ответ
1.	С
2.	a
3.	d
4.	a
5.	С
6.	b
7.	d
8.	С
9.	a
10.	b
11.	С
12	a
13	d
14	a
15	a
16	a

Критерии оценки:

«5» – от 86% до 100% правильных ответов.

«4» – от 76% до 85% правильных ответов.

 \ll 3» – от 61% до 75% правильных ответов.

«2» – менее 61% правильных ответов.

Таблица 3 - Форма информационной карты банка тестовых заданий

	Danna	Количество форм ТЗ				1/	
Наименование разделов	Всего ТЗ	Открытого типа	Закрытого типа	На соответствие	Упорядоче ние	Контролируемые компетенции	
Раздел 1. Теоретические основы химии	26		26			OK 01 OK 02 OK 04 OK 07 IIK 2.1.	
Раздел 2. Химические реакции	30		29	1		ОК 01 ОК 02 ОК 04 ОК 07 ПК 2.1.	
Раздел 3. Строение и свойства неорганических веществ	12		10	2		OK 01 OK 02 OK 04 OK 07 ПК 2.1.	
Раздел 4. Строение и свойства органических соединений	66		65	1		OK 01 OK 02 OK 04 OK 07 ПК 2.1.	
Раздел 5. Кинетические и термохимические закономерности протекания химических реакций	22		21	1		OK 01 OK 02 OK 04 OK 07 ПК 2.1.	
Раздел 6. Дисперсные системы	15		13	2		OK 01 OK 02 OK 04 OK 07 ПК 2.1.	
Раздел 7. Качественные реакции обнаружения неорганических и органических веществ	11		9	3		ОК 01 ОК 02 ОК 04 ОК 07 ПК 2.1.	
Раздел 8. Химия в быту и производственной деятельности человека	16		16			OK 01 OK 02 OK 04 OK 07 IIK 2.1.	

4.4. Комплект заданий для контрольной работы №1

Вариант №1

- **1.** Составить электронные конфигурации и электронные графические формулы для элементов № 8, № 12, №22
- 2. Запишите реакции между растворами электролитов, если они возможны:

Na₂SO₃ и HCl, MgCl₂ и NaOH, KOH и HNO_{3:}

Напишите полные и сокращенные ионные уравнения реакций и дайте объяснение.

- **3.** Определите, в каком случае будет протекать гидролиз, при растворении соли в воде. Напишите уравнение реакции гидролиза для этой соли:
- a) KBr;
- б) K₂SO₄;
- в) KNO₂;
- **4.** Определить окислитель и восстановитель в реакции. Уравняйте методом электронного баланса:

$$Na + H_2O \rightarrow NaOH + H_2$$

5. Напишите уравнение электролитической диссоциации следующих веществ:

H₂SO₄: KOH: KNO₃

Подчеркните одной чертой катионы и двумя – анионы.

6. Решите цепочку превращений

 $H_2 \rightarrow HCl \rightarrow FeCl_2 \rightarrow Fe(OH)_2 \rightarrow FeSO_4$

Вариант №2

- Составить электронные конфигурации и электронные графические формулы для элементов № 6,
 № 11, №21
- 2. Запишите реакции между растворами электролитов, если они возможны:

Na₂CO₃ и HNO₃, CuCl₂ и KOH, NaOH и H₂SO₄:

Напишите полные и сокращенные ионные уравнения реакций и дайте объяснение.

- **3.** Укажите соль, водный раствор которой имеет нейтральную среду. Почему? Распишите гидролиз выбранной соли
 - 1) K₂SiO₃
 - 2) NaNO₃
 - 3) ZnSO₄

CaCl₂

- **4.** Определить окислитель и восстановитель в реакции. Уравняйте методом электронного баланса: $HCl + Zn \rightarrow H_2 + ZnCl_2$
- 5. Напишите уравнение электролитической диссоциации следующих веществ:

HNO₃; NaOH; BaCl₂

Подчеркните одной чертой катионы и двумя – анионы.

6. Решите цепочки превращений

1)
$$Ca \rightarrow CaO \rightarrow Ca(OH)_2 \rightarrow Ca_3(PO_4)_2$$

$$\downarrow$$

Вариант №3

1. Составить электронные конфигурации и электронные графические формулы для элементов № 7, № 16, №20

2. Запишите реакции между растворами электролитов, если они возможны:

K₂CO₃ и H₂SO₄, CuSO_{4 и} KOH, NaOH и HCl.

Напишите полные и сокращенные ионные уравнения реакций и дайте объяснение.

- **3.** Определите какая из перечисленных солей, подвергается гидролизу по аниону. Напишите уравнение гидролиза этой соли и укажите среду раствора:
- a) BaCl₂;
- б) K₂S;
- в) NH₄Cl;
- **4.** Определить окислитель и восстановитель в реакции. Уравняйте методом электронного баланса:

$$Li + O_2 \rightarrow Li_2O$$

5. Напишите уравнение электролитической диссоциации следующих веществ:

Подчеркните одной чертой катионы и двумя – анионы.

6. Решите цепочки превращений

$$Ba \rightarrow BaCl_2 \rightarrow BaSO_4$$

$$\downarrow$$
 BaO \rightarrow Ba(OH)₂

Вариант №4

- **1.** Составить электронные конфигурации и электронные графические формулы для элементов № 3, №14, №26.
- 2. Запишите реакции между растворами электролитов, если они возможны:

BaCl₂ и H₂SO₄, FeCl₃ и KOH, KOH и HCl.

Напишите полные и сокращенные ионные уравнения реакций и дайте объяснение.

- 3. Определите какая из перечисленных солей, подвергается гидролизу по катиону. Напишите уравнение гидролиза этой соли и укажите среду раствора:
- a) K₂SO₄
- б) K₂CO_{3.}
- в) Fe₂(SO₄)₃
- **4.** Определить окислитель и восстановитель в реакции. Уравняйте методом электронного баланса: $P+O_2 \rightarrow P_2O_5$
- 5. Напишите уравнение электролитической диссоциации следующих веществ:

Подчеркните одной чертой катионы и двумя – анионы.

6. Решите цепочку превращений

$$Na \rightarrow Na_2O \rightarrow NaOH \rightarrow Na_3PO_4 \rightarrow Ba_3PO_4$$

Ответы и комментарии:

Вариант №1

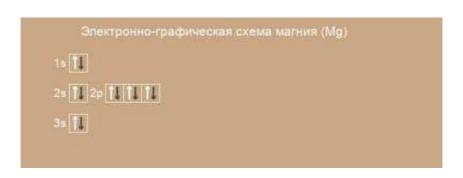
1. Составить электронные конфигурации и электронные графические формулы для элементов № 8, № 12, №22


Решение:

№ 8 - Кислород

Электронная формула атома кислорода:1s² 2s² 2p⁴

Сокращенная электронная конфигурация O: [He] 2s² 2p⁴
Распределение электронов в атоме кислорода (O)



№ 12 – Магний

Электронная формула атома магния: $1s^2 2s^2 2p^6 3s^2$ Сокращенная электронная конфигурация Mg: [Ne] $3s^2$

№22 – Титан

Электронная формула атома титана в порядке возрастания энергий орбиталей: $1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\ 4s^2\ 3d^2$

Электронная формула атома титана в порядке следования уровней: $1s^2 2s^2 2p^6 3s^2 3p^6 3d^2 4s^2$

Сокращенная электронная конфигурация Ti: [Ar] 3d² 4s²

2. Запишите реакции между растворами электролитов, если они возможны: Na_2SO_3 и HCl, MgCl₂ и NaOH, KOH и HNO₃:

Напишите полные и сокращенные ионные уравнения реакций и дайте объяснение.

Решение:

1) Na₂SO₃+2HCl=2NaCl+H₂O+SO₂

полное ионное уравнение: $2Na^+ + SO_3^{2^-} + 2H^+ + 2Cl^- = 2Na^+ + 2Cl^- + H_2O + SO_2$ сокращенное ионное уравнение: $2H^+ + SO_3^{2^-} + 2H^+ + 2Cl^- = 2Na^+ + 2Cl^- + H_2O + SO_2$

2) MgCl₂ + 2NaOH = 2NaCl + Mg(OH)₂

полное ионное уравнение: $Mg^{2+} + 2Cl^- + 2Na^+ + 2OH^- = 2Na^+ + 2Cl^- + Mg(OH)_2$ (осадок) сокращённое ионное уравнение: $Mg^{2+} + 2OH^- = Mg(OH)_2$ (осадок)

- **3**) КОН и HNO₃ реакция не идёт
- 3. Определите какая из перечисленных солей, подвергается гидролизу по катиону. Напишите уравнение гидролиза этой соли и укажите среду раствора:
- a) K₂SO₄
- б) K₂CO₃
- B) $Fe_2(SO_4)_3$

Решение:

- а) K_2SO_4 соль, образованная сильным основанием и сильной кислотой, поэтому гидролиз не протекает. Среда и pH раствора сульфата калия. Раствор имеет нейтральную среду (pH \approx 7).
- б) K_2CO_3 соль, образованная сильным основанием и слабой кислотой, поэтому реакция **гидролиза** протекает по аниону:

 $K_2CO_3 + HOH \rightleftarrows KHCO_3^- + KOH$

 $2K^{+}+CO_{3}^{2-}+HOH \rightleftharpoons K^{+}+HCO^{3-}+K^{+}+OH^{-}$

 CO_3^2 +HOH \rightleftharpoons HCO³-+. OH

- В результате **гидролиза** образовались гидроксид-ионы (OH-), поэтому раствор имеет щелочную среду (pH > 7).
- в) **Fe₂(SO₄)₃** -соль слабого основания и сильной кислоты, поэтому гидролиз протекает по катиону. Молекулярное уравнение:

 $Fe_2(SO_4)_3 + 2HOH \rightleftharpoons 2FeOHSO_4 + H_2SO_4$.

Полное ионное уравнение: $2Fe^{3+} + 3SO_4^{2-} + 2HOH \rightleftharpoons 2FeOH^{2+} + 2SO_4^{2-} + 2H^{+} + SO_4^{2-}$

Краткое ионное уравнение: Fe^{3+} + HOH \rightleftarrows $FeOH^{2+}$ + H^+ .

В результате гидролиза образовались ионы водорода (H+), поэтому раствор имеет кислую среду (pH < 7).

4. Определить окислитель и восстановитель в реакции. Уравняйте методом электронного баланса: $P+O_2 \rightarrow P_2O_5$

Решение:

$$4P + 5O_2 - - > 2P_2O_5$$
 $P^0 - 5e - - > P^{+5} \mid 4$ $O_2{}^0 + 4e - - > 2O^{-2} \mid 5$ P^0 - восстановитель. $O_2{}^0$ - окислитель.

5. Напишите уравнение электролитической диссоциации следующих веществ:

Na₂CO₃; KCl; Ba(OH)₂

Решение:

- a) $Na_2CO_3 \leftrightarrow 2Na^+ + CO_3^{2-}$
- 6) KCl \leftrightarrow K⁺ + Cl⁻
- B) $Ba(OH)_2 \leftrightarrow Ba^{2+} + 2OH^{-}$

6. Решите цепочку превращений

 $Na \rightarrow Na_2O \rightarrow NaOH \rightarrow Na_3PO_4 \rightarrow Ba_3PO_4$

Решение:

- 1) $4Na + O_2 = 2Na_2O$
- 2) $Na_2O + H_2O = 2NaOH$
- 3) $3NaOH + H_3PO_4 = Na_3PO_4 + 3H_2O$
- 4) $2Na_3PO_4+3Ba(OH)2=Ba_3(PO_4)_2+6NaOH$

Контролируемые компетенции ОК 01, ОК 02, ОК 04, О. 07, ПК 2.1.

Критерии оценки:

- «5» баллов выставляется обучающемуся, если выполнены все задания в работе и процент правильности хода решения и вычислений не менее 86%; аккуратное оформление выполняемой работы; обоснованные выводы, правильная и полная интерпретация выводов, студент аргументированно обосновывает свою точку зрения, обобщает материал.
- «4» балла выставляется обучающемуся, если выполнено не менее 76% заданий и ход решения правильный; незначительные погрешности в оформлении работы; правильная, но неполная интерпретация выводов.
- «3» балла выставляется обучающемуся, если выполнено не менее 61% всех заданий, подход к решению правильный, но есть ошибки; значительные погрешности в оформлении работы; неполная интерпретация выводов.
- «2»— балла выставляется обучающемуся, если выполнено менее 60 % всех заданий, решение содержит грубые ошибки; неаккуратное оформление работы; неправильная интерпретация выводов либо их отсутствие.

4.5. Практические работы и лабораторные работы

Общая и неорганическая химия.

Практическое занятие №1. Периодический закон и Периодическая системаД.И.Менделеева. Классы неорганических соединений.

Учебная цель: отработать знания о закономерностях изменения свойств по периодам вПСХЭ *Учебные задачи:*

- 1. Научиться видеть, что Периодическая таблица химических элементов графическое отображение периодического закона.
- 2. Рассмотреть структуру периодической таблицы: периоды (малые и большие), группы (главная и побочная).
- **3.** Уметь определять строение электронных оболочек атомов элементов малых периодов и особенности строения электронных оболочек атомов элементов больших периодов (переходных элементов) по положению химического элемента в Периодической системе.

Образовательные результаты, заявленные во ФГОС третьего поколения:

Студент должен

иметь практический опыт: составления схем строения атомов химических элементов по предложенному образцу;

знать: закон периодичности;

уметь: применять знания о законе периодичности при составлении схем строения атомов химических элементов на практике;

владеть: навыками работы с таблицей: «Периодическая система химических элементов Д.И. Менделеева».

Задачи практической работы:

- 1. Повторить теоретический материал по теме лабораторной работы.
- 2.Ответить на вопросы для закрепления теоретического материала.
 - 3. Определить местоположение химического элемента в таблице «Периодическая система химических элементов Д.И. Менделеева».
 - 4. Составить электронные и электронно графические схемы строения атомов химических элементов.
 - 5. Оформить отчет.

Оснащение занятия (средства обучения):

- 1. Сборник методических указаний для студентов по выполнению практических занятий и лабораторных работ по учебной дисциплине «Химия».
- 2. Таблица «Периодическая система химических элементов Д.И. Менделеева».
- 3. Тетрадь для лабораторных работ в клетку.
- 4. Ручка.
- 5. Простой карандаш.
- 6. Линейка.

Время выполнения 2 часа

Краткие теоретические материалы по теме лабораторной работы

Закономерности в изменении свойств этих химических элементов и образованных ими простых и сложных веществ (оксидов, гидроксидов) в зависимости от строения их атомов.

При перемещении слева направо вдоль периода металлические свойства элементов стано- вятся все менее ярко выраженными. При перемещении сверху вниз в пределах одной группы элементы, наоборот, обнаруживают все более ярко выраженные металлические свойства. Элементы, расположенные в средней части коротких периодов (2-й и 3-й периоды), как правило, имеют каркасную ковалентнуто структуру, а элементы из правой части этих периодов существуют в виде простых ковалентных молекул.

	Группа							
	1	11	111	IV	V	VI	VII	0(VIII)
2-й период	Li	Be	В	С	N	0	F	Ne
	Металл	ическая	B ₁₂	Алмаз,	N_2	O ₂	F ₂	Атомы
				графит				
			алентная молекулы)		валентна ые моле			

Атомные радиусы изменяются следующим образом: уменьшаются при перемещении слева направо вдоль периода; увеличиваются при перемещении сверху вниз вдоль группы. При перемещении слева направо по периоду возрастает электроотрицательность, энергия ионизации и сродство к электрону, которые достигают максимума у галогенов. У благородных же газов электроотрицательность равна 0. Изменение сродства к электрону элементов при перемещении сверху вниз вдоль группы не столь характерны, но при этом уменьшается электроотрицательность элементов.

В элементах второго периода заполняются 2s, а затем 2p-орбитали.

Li
$$1s^22s^1$$
 N $1s^22s^2p^3$
Be $1s^22s^2$ O $1s^22s^2p^4$
B $1s^22s^2p^1$ F $1s^22s^2p^5$
C $1s^22s^2p^2$ Ne $1s^22s^2p^6$

Главная подгруппа IV группы периодической системы химических элементов Д. М. Менделеева содержит углерод С, кремний Si, германий Ge, олово Sn и свинец Pb. Внешний электронный слой этих элементов содержит 4 электрона (конфигурация s^2p^2). Поэтому элементы подгруппы углерода должны иметь некоторые черты сходства. В частности, их высшая степень окисления одинакова и равна +4.

А чем обусловлено различие в свойствах элементов подгруппы? Различием энергии ионизации и радиуса их атомов. С увеличением атомного номера свойства элементов закономерно изменяются. Так, углерод и кремний — типичные неметаллы, олово и свинец

— металлы. Это проявляется прежде всего в том, что углерод образует простое вещество- неметалл (алмаз), а свинец типичный металл.

Германий занимает промежуточное положение. Согласно строению электронной оболочки атома р-элементы IV группы имеют четные степени окисления: +4, +2, - 4. Формула простейших водородных соединений — ЭН₄, причем связи Э—Н ковалентны и равноценны

вследствие гибридизации s- и p- орбиталей c образованием направленных подтетраэдрическими углами sp^3 -орбиталей.

Ослабление признаков неметаллического элемента означает, что в подгруппе (С—Si—Ge— Sn— Pb) высшая положительная степень окисления +4 становится все менее характерной, а более типичной становится степень окисления +2. Так, если для углерода наиболее устойчивы соединения, в которых он имеет степень окисления +4, то для свинца устойчивы соединения, в которых он проявляет степень окисления +2.

А что можно сказать об устойчивости соединений элементов в отрицательной степени окисления —4? По сравнению с неметаллическими элементами VII—V групп признаки неметаллического элемента р-элементы IV группы проявляют в меньшей степени. Поэтому для элементов подгруппы углерода отрицательная степень окисления нетипична.

Перечислим закономерности изменения свойств, проявляемые в пределах периодов:

- металлические свойства уменьшаются;
- неметаллические свойства усиливаются;
- степень окисления элементов в высших оксидах возрастает от +1 до +7 (+8 для Os и Ru);
- степень окисления элементов в летучих водородных соединениях возрастает от -4 до -1;
- оксиды от основных через амфотерные сменяются кислотными оксидами;
- гидроксиды от щелочей через амфотерные сменяются кислотами.
- Д. И. Менделеев в 1869 г. сделал вывод сформулировал Периодический закон, которыйзвучит так:

Свойства химических элементов и образованных ими веществ находятся в периодической зависимости от относительных атомных масс элементов.

Систематизируя химические элементы на основе их относительных атомных масс, Менделеев уделял большое внимание также свойствам элементов и образуемых ими веществ, распределяя элементы со сходными свойствами в вертикальные столбцы — группы. Иногда, в нарушение выявленной им закономерности, Менделеев ставил более тяжелые эле-менты с меньшими значениями относительных атомных масс. Например, он записал в своютаблицу кобальт перед никелем, теллур перед йодом, а когда были открыты инертные (благородные) газы, аргон перед калием. Такой порядок расположения Менделеев считал необходимым потому, что иначе эти элементы попали бы в группы несходных с ними по свойствам элементов, в частности, щелочной металл калий попал бы в группу инертныхгазов, а инертный газ аргон — в группу щелочных металлов.

Д. И. Менделеев не мог объяснить эти исключения из общего правила, не мог объяснить и причину периодичности свойств элементов и образованных ими веществ. Однако он предвидел, что эта причина кроется в сложном строении атома, внутреннее строение которого в то время не было изучено.

В соответствии с современными представлениями о строении атома, основой классификации химических элементов являются заряды их атомных ядер, и современная формулировка периодического закона такова:

Свойства химических элементов и образованных ими веществ находятся впериодической зависимости от зарядов их атомных ядер.

Периодичность в изменении свойств элементов объясняется периодической повторяемостью в строении внешних энергетических уровней их атомов. Именно число энергетических уровней, общее число расположенных на них электронов и число электронов на внешнем уровне отражают принятую в Периодической системе символику, т. е. раскрывают физический смысл номера периода, номера группы и порядкового номера элемента.

Строение атома позволяет объяснить и причины изменения металлических и неметаллических свойств элементов в периодах и группах.

Периодический закон и Периодическая система химических элементов Д. И. Менделеева **обобщают** сведения о химических элементах и образованных ими веществах и **объясняют** периодичность в изменении их свойств и причину сходства свойств элементов одной и той же группы.

Эти два важнейших значения Периодического закона и Периодической системы дополняет еще одно, которое заключается в возможности **прогнозировать,** т.е. предсказывать,описывать свойства и указывать пути открытия новых химических элементов

Вопросы для закрепления теоретического материала к лабораторной работе :Тест

1. B	ряду $Li \rightarrow Be \rightarrow B \rightarrow C$
0	усиливаются восстановительные свойства простых веществ
0	усиливается основность соединений
0	усиливаются кислотные свойства соединений
	кислотные свойства элементов ослабевают силение металлических свойств элементов представлено в ряду:
0	$N \to P \to As$
	$S \to P \to Si$
0	$Sb \rightarrow As \rightarrow P$
0	$Al \to C \to N$
-	лектронную конфигурацию $1s(2)2s(2)2p(6)3s(2)3p(6)4S(0)$ имеет ион
	Ca(0)
	Al(3+)
0	Cs(+)
	K(+)
-	каком ряду кислотность соединений возрастает
0	Cr(0), Cr(3+), Cr(+6)
0	Mn(+6), Mn(+4), Mn(+2)
0	Cl(+7), Cl(+3), Cl(+1)
	S(+6), S(+4), S(0)
-	ак изменяются кислотные свойства оксидов хрома в ряду: CrO - Cr2O3 - CrO3
	основной - кислотный - амфотерный
0	основной - амфотерный - кислотный
0	все основные
	все несолеобразующие
_	аны элементы: F, O, N, Cl. Какие утверждения верны?
0	в заданном ряду элементов электроотрицательность уменьшается
0	основные свойства оксидов этих элементов ослабевают, а кислотные усиливаются
0	неметаллические свойства простых веществ усиливаются
	степень окисления атомов в высших оксидах одинакова аиболее выражены металлические свойства у:
^	φοςοφρα
0	азота
0	рубидия
	PJ ~ 11/41111

водорода
8. Только амфотерные оксиды указаны в ряду:
Na2O, ZnO, CuO
^C ZnO, Al2O3, Cr2O3
Al2O3, FeO, SO3
CO2, CO, N2O5
9. Выберите правильное утверждение: А 9.в ряду элементов: Na – Si – Cl неметалличност простых веществ, образуемых этими элементами, усиливается В. в этом ряду степен
окисления атомов в соединениях с кислородом увеличиваются
утвеждение А верно
веное утверждение - В
оба утверждения верны
оба неверны
10. Соединения элемента с порядковым номером 20
простое вещество проявляет металлические свойства
О оксид элемента — кислотный
при взаимодействии с водой оксид элемента образует кислоту
в соединениях проявляет отрицательную степень окисления

Инструкция по выполнению лабораторной работы

Основываясь на теоретическом материале к работе заполните таблицу:

элемент				
ТИП				
радиус				
закономерность				
простое				
вещество				
характер				
Физ.состояние				
оксид				
характер				
закономерность				
Степень				
окисления Э и				
закономерность				
гидроксид				
характер				
закономерность				
гидрид				
характер				

Контрольные вопросы

Решить тест:

1. Закономерности изменения химических свойств элементов и их соединений по периодам и группам.

```
2. Усиление металлических свойств простых веществ происходит в ряду:
```

3. В ряду элементов Cs - K - Li возрастает:

восстановительная способность простых веществ 3) электроотрицательность радиус атома 4) химическая активность простых веществ

4. Основные свойства наиболее выражены у оксида:

натрия 2) калия 3) магния 4) бериллия 5.Металлические свойства усиливаются в ряду:

Ca – Mg – Be 2) Ca – Sr – Rb 3) Al – Mg – Be 4) Ba – Na – Li

6. Неметаллические свойства наиболее выражены у элемента:

Si 2) Ge 3) P 4) As

7. В порядке возрастания атомных радиусов расположены элементы:

F-Cl-Br 2) K-Ca-Mg 3) Na-Mg-Al 4) Ba-Be-Li

8. Кислотные свойства гидроксидов усиливаются в ряду:

 $\begin{array}{l} H_2SeO_4-HBrO_4-HClO_4\ 2)\ HBrO_4-H_2SeO_4-HClO_4\ 3)\ H_2SeO_4-HClO_4-HBrO_4\\ HClO_4-HBrO_4-H_2SeO_4 \end{array}$

9. Наиболее сильным основанием является:

NaOH 2) RbOH 3) KOH 4) LiOH

10. Наиболее активным металлом четвертого периода является:

калий 2) кальций 3) железо 4) германий

11. Наиболее сильные основные свойства проявляет водородное соединение:

CH₄ 2) PH₃ 3) NH₃ 4) H₂O

12. В ряду элементов Cs – Rb – K – Na увеличивается:

число энергетических уровней 3) число валентных электронов атомный радиус 4) электроотрицательность

13. В каком ряду вещества расположены в порядке увеличения металлических свойств? Na, Mg, Al 2) Mg, Ca, Sr 3) Rb, Ca, Na 4) Ca, Mg, Be

14. В каком ряду простые вещества расположены в порядке уменьшения металлических свойств?

Sr, Ba, Ca 2) Na, K, Rb 3) Mg, Ca, Sr 4) Al, Mg, Na

15. Металлические свойства усиливаются в ряду веществ:

натрий – магний – алюминий 3) кальций – стронций – барий

рубидий – калий – натрий 4) кальций – магний – бериллий

16. При увеличении порядкового номера элемента неметаллические свойства:

усиливаются 2) ослабевают 3) не изменяются 4) изменяются периодически

17. Основные свойства летучих водородных соединений элементов VA группы Периодической системы химических элементов с увеличением порядкового номера химического элемента: изменяются периодически 2) усиливаются 3) не изменяются 4) ослабевают 18.Восстановительные свойства металлов в главной подгруппе с увеличением порядковогономера элемента: убывают 2) не изменяются 3) возрастают 4) сначала возрастают, затем убывают. 19.Радиусы

атомов элементов, расположенных в третьем периоде ПСХЭ Д.И.Менделеева:меняются периодически 2) увеличиваются 3) не изменяются 4) уменьшаются 20.Электроотрицательность в ряду Na – Mg – Al

не изменяется 2) уменьшается 3) увеличивается 4) сначала уменьшается, затем увеличивается.

21. Химический элемент расположен в третьем периоде и IIIA подгруппе ПСХЭ. Его гидроксид:

основный 2) амфотерный 3) безразличный 4) кислотный

22.Высший гидроксид хрома

проявляет кислотные свойства 3) проявляет амфотерные свойства

проявляет основные свойства 4) не проявляет кислотно-основных свойств 23.Высшие оксиды элементов VA группы ПСХЭ Д.И.Менделеева являются: кислотными 2) основными 3) амфотерными 4) несолеобразующими 24.Формула высшего гидроксида мышьяка:

As₂O₃ 2) As₂O₅ 3) HAsO₂ 4) H₃AsO₄

25. Бром – это элемент:

Главной подгруппы IV группы 3) главной подгруппы VII группы побочной подгруппы IV группы 4) побочной подгруппы VII группы

26. В периоде с увеличением порядкового номера элемента химические свойства оксидов меняются в ряду:

Основный, амфотерный, кислотный 3) кислотный, амфотерный, основный

Амфотерный, кислотный, основный 4) основный, кислотный, амфотерный

Порядок выполнения отчета по лабораторной работе

- 1.В тетради для лабораторных работ напишите номер, название и учебную цель занятия. Ответьте на вопросы для закрепления теоретического материала к практической работе.
- 2.Закономерности отмеченные в работе подтвердите уравнениями реакций.

 3.Запишите вывод о проделанной работе, отразите, на сколько успешно Вы справились с
 - учебными задачами лабораторной работы и реализованы ли образовательные результаты, заявленные во $\Phi\Gamma$ ОС третьего поколения.
 - 4. Подготовьтесь к защите работы.

Литература:

- 1. Габриелян О.С. Химия: учебник для студентов профессиональных учебных заведений –М.,2013.
- 2. Ерохин Ю.М. Химия: учеб. для студ. учреждений сред. проф. образования / Ю.М. Ерохин.-М.: Академия,2011. с. 170-360

Практическое занятие № 2. Растворы. Теория электролитической диссоциации. Гидролиз солей.

Учебная цель:

- 1. Приобрести навыки приготовления растворов различной концентрации;
- 2. Ознакомиться с методами определения концентрации растворов.

Учебные задачи:

- 1. Проверить на практике действенность теоретических знаний о способах выражения концентрации веществ в растворе.
- 2. Уметь грамотно оформлять и решать задачи.

Образовательные результаты, заявленные во ФГОС третьего поколения:

Студент должен

иметь практический опыт: приготовления растворов с заданной концентрацией;

уметь: применять знания о способах получения растворов с заданной концентрацией напрактике; **знать:** алгоритм приготовления определенного объема раствора с заданной молярнойконцентрацией; **владеть:** навыками экспериментальной работы при работе в кабинете химии.

Задачи лабораторного занятия:

- 1. Повторить теоретический материал по теме практического занятия.
- 2. Ответить на вопросы для закрепления теоретического материала.
- 3. Решить 2 задачи по теме практического занятия.
- 4. Оформить отчет.

Оснащение занятия

Сборник методических указаний для студентов по выполнению практических занятий илабораторных работ по учебной дисциплине «Химия».

- 1. Тетрадь для практических занятий и лабораторных работ в клетку.
- 2. Ручка.
- 3. Простой карандаш.
- 4. Линейка.
- 5. Калькулятор.
- 6. Посуда и принадлежности:
- 7. стаканчик для взвешивания навески соли
- 8. мерный цилиндр, 250 мл
- 9. коническая колба или стакан, 500 мл
- 10. стеклянная палочка
- 11. цилиндр для определения плотности раствора
- 12. комплект ареометров
- 13.Весы, разновесы, мерные колбы объемом 0,5 л. и 1 л., пипетки, хлорид натрия, соляная кислота, ложка-шпатель, стакан,

Время выполнения 4 часа

Краткие теоретические материалы по теме работы

Концентрацией раствора называется весовое содержание растворенного вещества в определенном весовом количестве или в определенном объеме раствора.

В химии применяют следующие способы выражения концентрации раствора: процентная, молярная, моляльная и нормальная. *Массовая доля растворенного вещества \omega (массовая процентная концентрация \omega%)- это отношение массы растворенного вещества к массе раствора. Показывает количество граммов растворенного вещества, содержащееся в 100 г раствора. Например, в 100 г 10%-ного водного раствора хлорида натрия содержится 10 г соли NaCl и 90 г растворителя (воды).*

$$\omega_{p.6.} = \frac{m_{p.6.}}{m_{pacmsopa}}$$

Молярная концентрация C_{M} или *молярность* — это отношение количества моль растворенного вещества к объему раствора в литрах. Показывает число моль растворенного вещества, содержащееся в 1 л (1 дм³) раствора. Молярность обозначают **М**; например, 0,5 М раствор NaOH, содержит 0,5 моль NaOH в 1 л раствора.

$$C_{M} = \frac{n_{p.s.}}{V_{pacmsopa}} \begin{bmatrix} MOЛb \\ I \end{bmatrix}$$

Молярная концентрация эквивалента или нормальность – это отношение числа моль эквивалента растворенного вещества к объему раствора в литрах. Показывает число моль эквивалента, содержащееся в 1 л раствора. Нормальность обозначают **н** или **N**; например, 0,1н раствор HCl или 0,1 N раствор HCl, содержит 0,1 моль эквивалента HCl.

$$C_N = \frac{n_{3K6. p.s.}}{V_{pacm60pa}} \begin{bmatrix} MOЛЬ ЭКВ \\ & & \end{bmatrix}$$

Закон эквивалентов. Расворенные вещества реагируют друг с другом в эквивалентных количествах. Например, 1 моль эквивалентов H₂SO₄ реагирует с 1 моль эквивалентов NaOH, а 0,2 моль эквивалентов H₂SO₄ реагирует с 0,2 моль эквивалентов NaOH. Произведение нормальной концентрации раствора на его объем в литрах есть число моль эквивалентов, содержащееся в данном объеме. Тогда,

$$egin{aligned} C V &= C V & \text{или} & rac{V_2}{V_1} &= rac{C_{N1}}{V_1} \end{aligned}$$

Объемы реагирующих друг с другом растворов обратно пропорциональны их нормальным концентрациям

Процентная концентрация выражается числом граммов растворенного вещества, содержащимся в 100 г. раствора. Например, 20%-ный раствор поваренной соли – это раствор, в 100 г. которого содержится 20 г. соли и 80 г. воды.

Молярная концентрация выражается количеством молей растворенного вещества, содержащимся в 1 л. раствора. Раствор, содержащий 1 моль растворенного вещества в литре, называется одномолярным (1 М раствор), содержащий 0,1 моля, называется децимолярным (0,1 М раствор) и т.д.

Моляльная концентрация – концентрация растворенного вещества в молях на 1000 г. растворителя.

Нормальная концентрация выражается числом грамм-эквивалентов растворенного вещества, содержащимся в 1 л. 1 г-экв. растворенного вещества, называется одномолярным (1 н. раствор), содержащий 0,1 г-экв. в 1 л. называется децинормальным (0,1 н. раствор) и т.д. Вопросы для закрепления теоретического материала к практическому занятию:

- 1. Объясните, в чем сущность процесса растворения?
- 2. Почему процесс растворения бывает эндотермическим?
- 3. Чем насыщенный раствор отличается от: а) разбавленного; б) концентрированного;

- в) пересыщенного; г) ненасыщенного? 4. Перечислите известные вам способы выражения концентрации раствора.

5. Что такое нормальность и молярность раствора?

Инструкция по выполнению практической работы

<u>Опыт 1.</u> Приготовление раствора соли с заданной массовой долей растворенного вешества

- 1. Получите у преподавателя задание.
- 2. По заданию рассчитайте, сколько потребуется соли (г) и воды (мл) для приготовления раствора заданной концентрации.
- 3. Проверьте расчет у преподавателя.
- **4.** На весах взвесьте требуемое количество соли (с точностью 0,01 г). **Работа с весами требует очень большой аккуратности!**
- 5. Отмерьте цилиндром (по нижнему мениску) необходимое количество дистиллированной волы.
- 6. Перенесите навеску в коническую колбу или стакан.
- 7. Влейте воду в колбу/стакан с солью (воду необходимо приливать постепенно, все время перемешивать раствор).
- 8. Приготовленный раствор перелейте в цилиндр на 250 мл и измерьте ареометром его плотность. NB! При использовании ареометров обращаться с ними очень аккуратно - между проведениями измерений они должны быть промыты дистиллированной водой, вытерты и находиться в футляре. Не разрешается ходить с ареометрами по лаборатории.
- 9. Рассчитайте молярную концентрацию и молярную концентрацию эквивалента приготовленного раствора.
- 10. Результаты опыта оформите в виде таблицы 1.

Таблица 1

Масса, г		Плотность раствора по ареометру, г/см ³	Концентрац	ия приготовлен	ного раствора
соли	Воды		ω%	C_{M}	C_N

Расчеты:

<u>Опыт 2.</u> Приготовление растворов с заданной молярной или нормальной концентрацией

- 1. Получите у преподавателя задание.
- 2. Определите плотность исходного раствора кислоты. Для этого в цилиндр на 250 мл налейте кислоту и ареометром измерьте ее плотность.
- 3. Используя справочные таблицы, по измеренной плотности определите процентную концентрацию кислоты.
- 4. Рассчитайте, какое количество (мл) исходной кислоты необходимо для приготовления раствора заданной концентрации.
- 5. Проверьте расчет у преподавателя.
- 6. Мерной пипеткой отберите необходимый объем кислоты и поместите в мерную колбу нужного объема.

- 7. Добавьте в мерную колбу недостающее до необходимого объема количество дистиллированной воды. Последние несколько миллилитров добавляйте с помощью пипетки до метки на колбе.
- 8. Закройте колбу пробкой и перемешайте содержимое многократным перемешиванием.
- 9. Результаты вычислений занесите в таблицу 2.
- 10. Титрованием определите точную концентрацию полученного раствора кислоты по методике, описанной ниже.

Таблица 2

Измеренная	плотность	Процентная	Рассчитанный	объем	исходной
исходной кис	лоты, г/мл	концентрация	кис.	лоты, мл	
		исходной кислоты,			
		%			

Расчеты:

Методика анализа результатов, полученных в ходе занятия

Используя инструкцию по выполнению практического занятия, проведите эксперименты, соблюдая правила техники безопасности при работе в кабинете химии. Контрольные

вопросы

- 1. Что такое раствор?
- 2. Назовите способы выражения концентрации растворов.
- 3. Что показывает масовая процентная концентрация раствора?
- 4. Что такое титрование?
- 5. На чем основано кислотно-основное титрование?
- 6. Какой закон лежит в основе титриметрического анализа?
- 7. Способы определения конечной точки титрования.
- 8. Что такое фиксаналы? Для чего они предназначены?
- 9. В 200 мл воды растворили 17,92 литра хлороводорода. Рассчитайте массовую долю хлороводорода в растворе..

Порядок выполнения отчета по занятию

- 1. В тетради для практических занятий и лабораторных работ напишите номер, название и учебную цель занятия.
- 2. Ответьте на вопросы для закрепления теоретического материала к практическому занятию.
- 3. Выполните эксперимент задание №1, руководствуясь, инструкция по выполнению практического занятия.
- 4. Выполните эксперимент задание №2, руководствуясь, инструкция по выполнению практического занятия.
- 5. Заполните таблицу.
- 6. Запишите вывод о проделанной работе, отразите, на сколько успешно Вы справились с учебными задачами практического занятия и реализованы ли образовательные результаты, заявленные во ФГОС третьего поколения.

Образец отчета по занятию

«Приготовление растворов заданной концентрации».

Учебная цель: научиться готовить раствор с заданной концентрацией.

Ответы на вопросы для закрепления теоретического материалак занятию

			<u> </u>	
	Номер и содержание задачи	Что делали?	Расчѐты	Наблюдения
_				
1				
,				
2				
1				

Вывод: Выполнив задания занятия я... (см. учебные задачи и образовательные результаты, заявленные во $\Phi\Gamma$ ОС третьего поколения).

Литература:

- 1. Габриелян О.С. Химия: учебник для студентов профессиональных учебных заведений M.,2013.
- 2. Ерохин Ю.М. Химия: учеб. для студ. учреждений сред. проф. образования / Ю.М. Ерохин.- М.: Академия, 2011. с. 170-360.

Практическое занятие № 3. Химические реакции.

Учебная цель: отработать навыки составления уравнений реакций в молекулярной и ионной формах.

Учебные задачи:

- 1.Закрепить знания по теме "Реакции ионного обмена";
- 2. Исследовать необратимые реакции;

Образовательные результаты, заявленные во ФГОС третьего поколения:

Студент должен

иметь практический опыт: составления уравнений химических реакций в молекулярной и ионной формах;

уметь: работать в лаборатории с соблюдением правил ТБ;

знать: условия необратимости реакций ионного обмена;

владеть: практическими навыками проведения реакций ионного обмена.

Задачи лабораторной работы:

Повторить теоретический материал по теме лабораторной работы.

Ответить на вопросы для закрепления теоретического материала.

Провести реакции ионного обмена.

Оформить отчет.

Обеспеченность занятия (средства обучения):

Сборник методических указаний для студентов по выполнению практических занятий илабораторных работ по учебной дисциплине «Химия».

Таблица «Растворимость кислот, солей и оснований в воде». Тетрадь для

практических занятий и лабораторных работ в клетку. Ручка.

Простой карандаш.

Линейка.

Растворы: кислот - соляной, серной; гидроксида натрия, индикаторов - фенолфталеина, метилоранжа, синего лакмуса; *солей* - карбонат натрия, нитрат бария, сульфат алюминия, сульфат меди (II), хлорид аммония, хлорид кальция; дистиллированная вода; кювета для капельного анализа, пипетка, стеклянная палочка, универсальная индикаторная бумага.

Время выполнения 2 часа.

Краткие теоретические и учебно-методические материалы по теме лабораторной работы Распад электролитов на ионы при растворении в воде или расплавлении называется электролитической диссоциацией. Электролиты — вещества, проводящие электрический ток в растворенном или расплавленном состоянии. К электролитам относятся вещества с ионной связью: соли, основания и полярные молекулы кислот.

Вещества, которые в растворенном или расплавленном состоянии не проводят электрического тока, называются не электролитами.

классификация	электролитов
---------------	--------------

Степень электролитической диссоциации	Сила эл	ектролита	Примеры	
		кислоты	H ₂ SO ₄ , HNO ₃ , HCl, HBr, HI	
$\alpha > 30\%$	сильные	основания	<i>Me(OH)</i> _n P., M. в воде	
		соли	Р. в воде	
3% < α < 30%	средние	редние кислоты <i>HF</i>		
		основания	$Fe(OH)_3$	
α < 30%	слабые	кислоты	H_2CO_3 , H_2SiO_3 ,	

Электролитическая диссоциация: I. Кислот 1. HCl \leftrightarrows H⁺ + Cl⁻, HCl + H₂O \leftrightarrows H₃O⁺ + Cl⁻, 2. H₂SO₄ \leftrightarrows 2H⁺ + SO₄²⁻. 3. Ступенчатая диссоциация \leftrightarrows Кислот: H₃PO₄ \leftrightarrows H⁺ + H₂PO₄ \Longrightarrow H⁺ +

	H_2S , CH_3COOH
основания	<i>Me(OH)</i> _n H. в воде и <i>NH4OH</i>
соли	М. в воде

 $HPO_4^{2-} \leftrightarrows H^+ + PO_4^{3-}$

II. Щелочей

NaOH \leftrightarrows Na⁺ + OH⁻, $Ca(OH)_2 \leftrightarrows Ca^{2+} + 2OH^-$.

III. Солей

 $BaCl_2 = Ba^{2+} + 2Cl^{-}$ $Ca(NO_3)_2 \quad \leftrightarrows \quad Ca^{2+} \quad +$

 $2NO_3$.

 $Al_2(SO_4)_3 \iff 2Al^{3+} +$ $3SO_4^{2-}$

Реакции обмена между растворами электролитов идут до конца, если образуется малодиссоциирующее вещество, или вещество, практически нерастворимое, выделяющееся из раствора в виде осадка или газа.

Обратимые - реакции между ионами в водных растворах веществ, если все продукты реакции растворимы в воде. KCI + HNO3 = KNO3 + HCI

Необратимые - реакции между ионами в водных растворах веществ, если один из продуктов реакции уходит из сферы реакции в виде воды, *газа*, осадка.

 $2KOH + H_2SO_4 \rightarrow K_2SO_4 + H_2O$ $K_2CO_3 + HNO_3 \rightarrow KNO_3 + CO_2\uparrow + H_2O$ $3KOH + FeCl_3 \rightarrow Fe(OH)_3\downarrow + 3KCI$

Алгоритм составления реакций ионного обмена (РИО)

р монеулариом попном и уратурм иониом рите

в молекулярном, полном и кратком ионно	м виде		
1). Записываем уравнение РИО в	Взаимодействие серной кислоты и хлорида бария:		
молекулярном виде:	II II II		
, ,	$H_2SO_4 + BaCl_2 = BaSO_4 + 2HCl$		
2). Используя ТР указываем	P P H P		
растворимость веществ воде:	$H_2SO_4 + BaCl_2 = BaSO_4 \downarrow + 2HCl$		
- Если продукт является М или Н – оно	Молекулярный вид		
выпадает в осадок, справа от химической			
формулы ставим знак ↓;			
- Если продукт является газом, справа от			
химической формулы ставим знак ↑.			
3). Записываем уравнение РИО в полном	$2H + SO_4 + Ba + 2CI = BaSO_4 \downarrow + 2H + 2CI$		
ионном виде.	$\overline{}$ Полный ионный вид		
4). Записываем уравнение реакции в	$SO_4^{2-} + Ba^{2+} + = BaSO_4 \downarrow$		
кратком ионном виде. Сокращаем	Краткий ионный вид		
одинаковые ионы, вычеркивая их из	Вывод – данная реакция необратима, т.е. идет до		
уравнения реакции.	конца, т.к. образовался осадок BaSO₄ ↓		

Вопросы для закрепления теоретического материала к лабораторной работе

Как называются реакции между кислотой и основанием? Почему?

Составить молекулярные уравнения для реакций, если краткие ионные уравнения имеют

вид: a) $Ca^{2+} + CO_3^{2-} \rightarrow CaCO_3 \downarrow$, б) $2H^+ + SO_3^{2-} \rightarrow H_2O + SO_2 \uparrow$.

реакций составьте ионные уравнения:

a) $Fe(OH)_3$ + 3HCl \rightarrow $FeCl_3 + 3H_2O$, 6) $Ca(OH)_2 + 2HNO_3 \rightarrow Ca(NO_3)_2 + 2H_2O$.

Задания для лабораторной работы:

уравнений

Задание № 1. Проведите реакции ионного обмена.

Задание № 2. Составьте соответствующие уравнения химических реакций в молекулярном и ионном видах.

Вопросы для закрепления теоретического материала к лабораторной работе:

- 1. Что такое электролиты?
- 2. Чем определяется сила электролита?
- 3. Какие кислоты и основания относятся к сильным электролитам?
- 4. Каковы признаки протекания РИО до конца?
- 5. Что показывает сокращенное ионное уравнение реакции?

Инструкция по выполнению лабораторной работы

Ознакомьтесь с правилами по технике безопасности при работе в химической лаборатории и распишитесь в журнале по ТБ.

Опыт 1.В две пробирки прилейте по 1—2 мл раствора гидроксида натрия. Добавьте в каждую 2—3 капли раствора фенолфталеина. Что наблюдаете? Затем прилейте в первую пробирку раствор азотной кислоты, а во вторую — раствор уксусной кислоты до исчезновения окраски.

Напишите уравнения реакций в молекулярной и ионной формах.

Опыт 2.В две пробирки прилейте по 2 мл раствора карбоната натрия, а затем добавьте: в первую — 1—2 мл раствора соляной кислоты, а в другую — 1—2 мл раствора уксусной кислоты. Что наблюдаете?

Напишите уравнения реакций в молекулярной и ионной формах.

Опыт 3.К 1—2 мл соляной кислоты в пробирке добавьте несколько капель раствора нитрата серебра. Что наблюдаете?

Напишите уравнение реакций в молекулярной и ионной формах.

Опыт 4.В две пробирки прилейте по 1 мл раствора медного купороса, а затем добавьте в каждую столько же раствора гидроксида натрия. Что наблюдаете?

Напишите уравнения реакций в молекулярной и ионной формах.

Опыт 5.К 1 мл раствора серной кислоты в пробирке добавьте 5—10 капель раствора хлорида бария. Что наблюдаете?

Напишите уравнение реакций в молекулярной и ионной формах.

Опыт 6. Образование малорастворимых веществ.

В пробирку добавьте по одной капле следующих растворов: № 1 -сульфата меди (II), № 2 - хлорида кальция, № 3 - сульфата алюминия.

Добавьте к ним растворы: в первую - гидроксид натрия, ко вторую - карбонат натрия, к третью - нитрат бария.

В таблицу запишите наблюдения (цвет и характер осадка). Составьте уравнения происходящих реакций в молекулярном и ионном видах. Назовите полученные вещества.

Опыт 7. Реакции с образованием газов.

В 4 пробирку добавьте 1 каплю раствора карбоната натрия, в 5-ю -1 каплю раствора хлорида аммония (NH₄Cl).

Добавьте к ним растворы: в 4-ю - 1 каплю серной кислоты, в 5-ю -1 каплю раствора щелочи. В таблицу запишите наблюдения (цвет и запах газов). Составьте уравнения происходящих реакций в молекулярном и ионном видах. Назовите полученные вещества.

Опыт 8. Реакции, идущие с образованием малодиссоциирующих веществ.

В 6-ю пробирку добавьте 1 каплю раствора гидроксида натрия и добавьте индикатор - фенолфталеин.

В таблицу запишите наблюдения. Объясните причину изменения окраски индикатора. Добавьте по каплям в 6-ю пробирку раствор соляной кислоты до обесцвечивания. Объясните причину обесцвечивания.

В 7-ю пробирку добавьте 1 каплю раствора сульфата меди и немного гидроксида натрия. Запишите наблюдения.

Прилейте в 7-ю пробирку кислоты до растворения осадка. Запишите наблюдения.

Поясните, почему в 6-ой пробирке произошло обесцвечивание, а в 7-ой - растворение осадка. Составьте уравнения происходящих реакций в молекулярном и ионном видах. Назовите полученные вещества.

Контрольные вопросы

1. Напишите в полной и сокращенной ионно-молекулярных формах уравнения реакций, представленных следующими схемами:

$$AgCH_3COO + KCl \rightarrow$$
; $NH_4OH + H_2SO_4 \rightarrow$; $CaCl_2 + Na_3PO_4 \rightarrow$; $Na_2SO_4 + Ba(OH)_2 \rightarrow$; $Na_2S + HCl \rightarrow$;

2. Составьте уравнения реакций в молекулярной форме, которые будут соответствовать следующим уравнениям в сокращенной ионно-молекулярной форме:

$$Cu^{2+} + S^{2-} = CuS \downarrow;$$
 $FeO + 2H^{+} = Fe^{2+} + H_2O$
 $Ba^{2+} + SO^{2-} = BaSO \downarrow;$

3. Какие из приведенных ниже реакций протекают практически до конца? Запишите уравнения в полной и сокращенной ионно-молекулярной формах. Укажите причину, определяющую практическую необратимость каждой реакции.

$$HCN + KOH \rightarrow$$
; $CaCl_2 + AgNO_3 \rightarrow$; $Cu(OH)_2 + H_2SO_4 \rightarrow$; $Ba(OH)_2 + NaCl \rightarrow$; $Ca(NO_3)_2 + HCl \rightarrow$ $FeSO_4 + HCl \rightarrow$;

Образец отчета по лабораторной работе

Учебная цель: отработать навыки составления уравнений реакций в молекулярной и ионнойформах. Ответы на вопросы для закрепления теоретического материалак лабораторной работе

l	• • • • •	• • • •	• • • • •	• • • • • •	 	• • • • •	 • • • • •	• • • • •	• • • • •	• • • • •	• • • • •	• • • • •	 • • • • •	• • • • •	• • • •	• • • •	• • • • •	• • • • •	• •
3																			

Название опыта	Уравнение реакции ионного обмена	Качественный признак реакции

Вывод: Выполнив задания лабораторной работы я (см. учебные задачи и образовательные результаты, заявленные во Φ ГОС третьего поколения) Подготовьтесь к защите работы.

Литература:

- 1. Габриелян О.С. Химия: учебник для студентов профессиональных учебных завелений –М., 2013.
- 2. Ерохин Ю.М. Химия: учеб. для студ. учреждений сред. проф. образования / Ю.М. Ерохин.-М.: Академия,2011. с. 170-

Практическое занятие № 4. Свойства металлов и неметаллов и ихсоединений.

Учебная цель: 1. Изучить особенности химического поведения металлов разной химической активности.

Учебные задачи:

- 1. Исследовать способность металлов к взаимодействию с растворами солей, кислот.
- 2. Познакомиться экспериментально с общими химическими свойствами металлов.
- 3. Провести химические реакции, которые характерны для металлов.

Образовательные результаты, заявленные во ФГОС третьего поколения:

Студент должен

иметь практический опыт: составления уравнений химических реакций в молекулярном и ионном видах;

уметь: работать в лаборатории с соблюдением правил ТБ;

знать: химические свойства металлов, особенности взаимодействия металлов разной химической активности с кислотами;

владеть: навыками экспериментальной работы при работе в кабинете химии

Оснащение занятия (средства обучения):

Часть 1.

1. Оборудование и реактивы:

пробирки, алюминий, цинк, медь, серная кислота концентрированная и разбавленная, азотная кислота концентрированная и разбавленная, p-p хлорида железа (3), p-p сульфата меди, p-p нитрата свинца.

- 2. Инструкционные карты
- 3. Чертежные принадлежности: линейка, простой карандаш.

Часть 2.

1. Оборудование и реактивы:

планшеты, 1М p-p серной кислоты, 2М p-p едкого кали, 0,12М p-p сульфита натрия, дистиллированная вода.

- 2. Инструкционные карты
- 3. Чертежные принадлежности: линейка, простой карандаш.

Время выполнения 4 часа

Краткие теоретические материалы к лабораторной работе части1.

При изучении общих свойств металлов следует обратить внимание на особенность их внутренней структуры. Слабая связь валентных электронов с ядром у атомов металлов приводит к возникновению металлической связи. Кристаллическое и жидкое состояние металлов характеризуется тем, что часть их валентных электронов находится в свободном состоянии. Наличием свободных электронов и обусловлены многие общие для всех металлов свойства: электро— и теплопроводность.

При химических реакциях атомы типичных металлов всегда отдают электроны и превращаются в катионы. Чем легче металл отдает свои электроны, тем он активнее. Химически активные металлы – энергичные восстановители, в реакциях они окисляются. К ним относятся металлы главных подгрупп первой и второй групп (щелочные и щелочноземельные). А такие металлы, как ртуть ,серебро, золото, платина химически малоактивны, с трудом окисляются, их восстановительная способность выражена слабо.

Для сравнения восстановительной способности металлов существует ряд напряжений металлов. В соответствии с ним слева направо уменьшается восстановительная способность металлов и увеличивается окислительная способность их ионов:

$$K$$
, Ca , Na , Mg , Al , Mn , Zn , Fe , Ni , Sn , Pb , H , Cu , Ag , Hg , Pt , Au K^+ , Ca^{2+} , Na^+ , Mg^{2+} , Al^{3+} , Mn^{2+} , Zn^{2+} , Fe^{2+} , Ni^{2+} , Sn^{2+} , Pb^{2+} , H^+ , Cu^{2+} , Ag^+ , Hg^{2+} , Pt^{2+} , Au^{3+} Выводы:

Чем левее расположен металл, тем он химически более активен и обладает большейвосстановительной способностью;

Все металлы, расположенные левее водорода, вытесняют его из большинства разбавленных кислот; Каждый металл способен вытеснять из солей все другие металлы, расположенные в ряду напряжений правее его.

Металлы как восстановители могут вступать в реакции с различными окислителями: с простыми веществами (кислородом, хлором, серой, углеродом и др.), образуя соответственно оксиды, хлориды, сульфиды и карбиды; с кислотами; с солями других металлов. Для ознакомления с химическими свойствами металлов обратитесь к табл. 1.

Таблица 1

Химическая активность металлов

Свойство металлов	K Na Ca Mg Al Mn Zn Fe Cr Ni Sn Pt			Pb	Cu Hg Ag			Pt Au
Нахождение в природе	Только в виде соединений				В виде соединений и в свободном состоянии			В свободном состоянии
Промышл. способы получения	Электролиз расплавов		Восстановление (С электролиз рас	С, Al) или створов			Выплавка из руды	
Окисляемос ть кислородом	Очень быстра я	C	Экисление при н.у.	C)кисление нагреван	-	Не о	кисляются
Отношение к воде	Вытесн яют H ₂ из воды при н.у.		сняют Н ₂ из воды ри нагревании		Н	e pear	ируют с во	Эдой
Отношение к кислотам	выделяя	Реагируют с разб. и. конц. кислотами, выделяя H_2 или другие продукты восстановления кислот и образуя соль			Окислян конц кислота окислите и	[. ми—	кис	іяются конц. потами— пителями

При нахождении металла в растворе, содержащем более активный окислитель в виде иона (имеющего больший электродный потенциал, см. табл. 2), он может окисляться с переходом его ионов в раствор.

Рассмотрим взаимодействие металлов с растворами солей. Здесь окислителем является катион соли.

<u>Пример 1.</u> Железо погружено в раствор сульфата меди (II) с концентрацией 1 М. По таблице2 находим, что $E_o(Fe/Fe^{2+})=-0.44~B~< E_o(Cu/Cu^{2+})=0.34~B$, поэтому ионы меди являются более сильными окислителями, чем ионы железа. Значит, на поверхности железа пойдут процессы: окисления $Fe-2e=Fe^{2+}$ и восстановления $Cu^{2+}+2e=Cu$. Суммарное ионное уравнение: $Cu^{2+}+Fe=Fe^{2+}+Cu$, суммарное молекулярное уравнение $CuSO_4+Fe=FeSO_4+Cu$. *При взаимодействии металлов с соляной и разбавленной серной кислотами* в роли окислителя выступает ион водорода. Эти кислоты энергично взаимодействуют со многими металлами (потенциал которых ниже, чем потенциал водородного электрода), с образованием солей и выделением свободного водорода.

<u>Пример 2.</u> Взаимодействие алюминия с соляной кислотой. $E_o(Al/Al^{3+})$ =−1, 700 В. Реакция пойдет следующим образом: процесс восстановления $2H^+$ +2e= H_2 , процесс окисления Al– 3e= Al^{3+} . Суммарное ионное уравнение: 2Al+ $6H^+$ = $2Al^{3+}$ + $3H_2$. Молекулярное уравнение: 2Al+6HCl= $2AlCl_3$ + $3H_2$ ↑.

<u>Пример 3.</u> Серебро в растворах разбавленных кислот растворяться не будет, так как E_0 $(Ag/Ag^+)=0.85$ В больше E_0 $(H_2/2H^+)=0$ В, поэтому реакция не пойдет.

При взаимодействии металлов с концентрированной серной кислотой возникает ряд особенностей, связанных с тем, что здесь окислителем является сульфат-анион SO_4^{2-} . При его восстановлении степень окисления серы уменьшается от +6 до +4, 0, -2. Это зависит от активности металла, то есть от его электродного потенциала. Так, в случае неактивного металла ($E_o > -0.5$ В) сера восстанавливается до +4 (SO_2), а в случае активного металла ($E_o < -0.5$ В) сера восстанавливается до 0 (S) или -2 (SO_2).

<u>Пример 4.</u> В раствор концентрированной серной кислоты помещèн цинк. Так как для цинка E_0 = 0,763 В, значит, сульфат–анион SO $^{2-}$ способен₄восстанавливаться до H S; процесс восстановления: $SO_4^{2-} + 10H^+ + 8e = H_2S + 4H_2O$, процесс окисления: $Zn - 2e = Zn^{2+}$.

Взаимодействие металлов с разбавленной и концентрированной азотной кислотой. В азотной кислоте окислителем является нитрат—анион NO $^-$. Характерная особенность азотной кислоты состоит в том, что при еè действии на металлы не происходит выделения газообразного водорода. Дело в том, что азотная кислота, являясь сильным окислителем, способна восстанавливаться в водном растворе (особенно под действием света): $2HNO_3 = 2NO_2 + H_2O + \frac{1}{2}O_2$. Поэтому водород, который мог бы выделиться из азотной кислоты при действии на неè металла, окисляется в воду образующимся атомарным кислородом. При восстановлении нитрат—аниона степень окисления азота уменьшается с +5 до +4, +3, +2, +1, 0, -3. При этом образуются различные оксиды азота. Степень окисления азота также зависит от концентрации кислоты и активности металла, например:

Активность металла	Концентрация кислоты	Продукт восстановления
Высокая (Ео<0,5)	Разбавленная	N_2O
Средняя (0.5 <eo<0)< td=""><td>Разбавленная</td><td>NO, N₂</td></eo<0)<>	Разбавленная	NO, N ₂
Низкая (Ео>0)	Очень разбавленная	NH ₃ , NO
Любая (0 <eo, eo<0)<="" td=""><td>Концентрированная</td><td>NO_2</td></eo,>	Концентрированная	NO_2

<u>Пример 5.</u> Серебро помещено в раствор разбавленной азотной кислоты. Так как серебро относится к неактивным металлам (см. табл. 2), то реакция пойдет следующим образом: 3Ag

 $+4HNO_3 = 3AgNO_3 + NO + 2H_2O$. Здесь процесс восстановления: $NO^-_3 + 4H^+ + 3e = = NO + 2H_2O$. Процесс окисления: $Ag - e = Ag^+$.

Если же серебро находится в концентрированном растворе азотной кислоты, то вероятна следующая реакция: $Ag + 2HNO_3 = AgNO_3 + NO_2 + H_2O$. Здесь процесс восстановления $NO^ _3 + 2H^+ + e = NO_2 + H_2O$, а процесс окисления: $Ag - e = Ag^+$.

При взаимодействии металлов с водой окислителем выступает ион водорода. Теоретически с водой реагируют металлы, имеющие в нейтральной среде меньший потенциал, чем потенциал водорода. Наиболее бурно при н.у. с водой способны реагировать только щелочные и щелочноземельные металлы.

<u>Пример 6.</u> Взаимодействие натрия с водой. Так как $E_0(Na/Na^+) << E_0(H_2/2H^+)$, реакция пойдет следующим образом: процесс восстановления $2H_2O + 2e = H_2 + 2OH^-$, процесс окисления $Na - e = Na^+$. Суммарное уравнение реакции: $2Na + 2H_2O = 2NaOH + H_2$.

Инструкция по выполнению лабораторной работы Часть 1.

Опыт 1. Действие кислот на металлы.

1.1. Взаимодействие металлов с разбавленной серной кислотой.

В три пробирки поместите по кусочку металлических алюминия, цинка и меди, добавьте несколько капель разбавленной серной кислоты. Исходя из положения этих металлов в ряду напряжений, сделайте предположительный вывод о возможности протекания реакции между этими металлами и серной кислотой. Составьте молекулярные уравнения, применивэлектронно—ионный баланс. (См. пример 3). Укажите, какой ион является окислителем в этих реакциях

1.2 Взаимодействие меди с концентрированной серной кислотой.

Поместите в пробирку кусочек меди и добавте 2–3 капли концентрированной серной кислоты. При необходимости подогрейте на спиртовке. Какой газ образуется в результате реакции? Отметьте цвет раствора и сделайте вывод: какие ионы присутствуют в растворе. Составьте молекулярное уравнение и электронно–ионный баланс. (См. пример 4). Какой ионявляется окислителем?

- 1.3. Взаимодействие цинка с концентрированной серной кислотой при нагревании. Поместите в пробирку кусочек цинка и добавьте 5–6 капель концентрированной серной кислоты. Пробирку немножко подогрейте. Какой газ выделяется? Продолжайте нагревание . Почувствовали ли вы запах выделяющегося сероводорода? Напишите уравнения происходящих реакций между цинком и серной кислотой, отличающихся друг от друга продуктами восстановления серной кислоты: при слабом нагревании выделяется газ диоксид серы, при более сильном нагревании образуется сера, в условиях ещè более сильного нагрева появляется запах сероводорода. Составьте электронно—ионные уравнения для этих реакций.
- 1.4. Взаимодействие металлов с концентрированной азотной кислотой.

В две пробирки поместите по кусочку меди и цинка и добавьте 2–3 капельки концентрированной азотной кислоты. Какой газ выделяется? Напишите молекулярное уравнение и составьте электронно–ионный баланс. (См. пример 5). Исходя из значений электродных потенциалов, ответьте на вопрос, какие металлы взаимодействуют с концентрированной азотной кислотой.

1.5. Действие на металлы разбавленной азотной кислоты.

В две пробирки поместите по кусочку металлических меди и цинка. Добавьте в обе пробиркипо 3—5 капель разбавленной азотной кислоты. Составьте молекулярные уравнения и электронно—ионные уравнения для процессов окисления-восстановления.

Опыт 2.Взаимодействие металла с солями.

Взять три пробирки, в каждую из которых опустить по кусочку цинка. В первую пробирку на ¹/₄ объема прилить раствора хлорида железа (III), во вторую — сульфата меди, в третью — нитрата свинца. Что происходит на поверхности цинка? Написать уравнения реакций в молекулярной и ионной формах, указать процессы окисления и восстановления, используя ряд напряжений металлов и таблицу 2.

Контрольные вопросы

- 1. Ряд напряжений металлов. Характеристика восстановительных свойств металлов по ряду напряжения.
- 2. Характеристика общих химических свойств металлов.
- 3. Особенности взаимодействия металлов с азотной и концентрированной серной кислотами.
- 4. Никелевые пластинки опущены в водные растворы хлорида железа (III) и хлорида меди (II). В каком случае протекает растворение никеля? Составить уравнения молекулярных и ионных реакций.
- 5. Возможно ли растворение ртути в соляной, серной и азотной кислотах? Написать уравнения возможных реакций, указать окислительно-восстановительные процессы.
- 6. Какие металлы растворяются в разбавленной серной кислоте: железо, олово, висмут, платина? Ответ мотивировать составлением реакций, используя ряд напряжений металлов
- 7. Какие из приведенных ниже реакций являются окислительно-восстановительными?

$$Zn + H_2SO_4(pa3\delta) = ZnSO_4 + H_2$$

 $Zn + 2H_2SO_4(\kappa o \mu \mu) = ZnSO_4 + SO_2 + 2H_2O$
 $Zn(OH)_2 + H_2SO_4 = ZnSO_4 + 2H_2O$
 $Fe_2O_3 + 6HCl = 2FeCl_3 + 3H_2O$
 $2Na_2SO_4 + SiO_2 + C = 2Na_2SiO_3 + CO_2 + 2SO_2$

8. Окисление или восстановление происходит при переходах:

$$a)FeSO_4 \rightarrow FeO_2(SO_4)_3 \qquad \qquad \partial)Cl^- \rightarrow ClO$$

$$6)Fe_2O_3 \rightarrow Fe \qquad \qquad e)2JO^- \rightarrow J_4$$

$$e)NH_3 \rightarrow NO \qquad \qquad 4 \qquad 2$$

$$B)NH_3 \rightarrow NO \qquad \qquad \mathcal{M}nSO_4 \rightarrow KMnO_4$$

$$c)2Cl^- \rightarrow Cl \qquad \qquad e)Cr(SO) \rightarrow CrSO$$

$$2 \qquad \qquad 2 \qquad 4 \qquad 3 \qquad 4$$

Отчет по лабораторной работе оформляется так:

1. Опытная часть фиксируется в таблицу:

Что делаю	Что наблюдаю	Уравнения реакций и выводы
Опыт 1.		
•••••		
Опыт 2.		
•••••		

Общий вывод к части 1: -----

2.На контрольные вопросы даются полные ответы.

Литература:

- 1. Габриелян О.С. Химия: учебник для студентов профессиональных учебных заведений –М.,2013.
- 2. Ерохин Ю.М. Химия: учеб. для студ. учреждений сред. проф. образования / Ю.М. Ерохин.-М.: Академия,2011. с. 170-360.

Органическая химия

Практическое занятие № 1. Предельные и непредельные углеводороды.

Учебная цель:

Научиться составлять модели молекул различной сложности.

Изучить особенности строения молекул органических веществ.

Найти общие признаки и различия гомологов и изомеров.

Образовательные результаты, заявленные во ФГОС третьего поколения:

Студент должен

иметь практический опыт: составления моделей молекул органических веществ; **уметь:** применять полученные знания о строении органических веществ на практике; **знать:** основные положения теории строения органических веществ А.М. Бутлерова; **владеть:** технологией изготовления моделей молекул органических веществ.

Оснащение занятия (средства обучения):

Сборник методических указаний для студентов по выполнению практических занятий илабораторных работ по учебной дисциплине «Химия».

Тетрадь для практических занятий и лабораторных работ в клетку. Ручка.

Простой карандаш.

Линейка.

Пластилин.

Спички.

Транспортир.

Карточки-задания, инструкционные карты, образцы готовых моделей.

Время выполнения 4 часа

Краткие теоретические материалы по теме лабораторной работы

Для того чтобы понять сущность работы, надо знать, что:

- 1. Простейшим представителем насыщенных углеводородов является метан, структурная формула которогоСН₄.
- 2. ${\rm sp^3}$ гибридизация характерна для атомов углерода в (алканах) в частности, в метане.
- 3. Атом углерода в молекуле метана расположен в центре тетраэдра, атомы водорода в его вершинах.
- 4. Валентные углы между направлениями связей равны между собой и составляют угол 109°28'.

5. В этане есть углерод - углеродные связи.. Рисунок 2.

L(C-C) = 0.154 нм.

В предельных углеводородах (алканы) все углеродные атомы находятся в состоянии гибридизации sp^3 , и образуют одинарные σ – связи. Угол связи составляет 109,28°. Форма молекул правильный тетраэдр.

B молекулах алкенов углеродные атомы находятся в состоянии гибридизации sp^2 , и образуют двойные связи σ и π — связи. Угол связи σ составляет 120° , а π — связь распологается перпендикулярно связи σ . Форма молекул правильный треугольник.

B молекулах алкинов углеродные атомы находятся в состоянии гибридизации sp , и образуют тройные связи одну σ и две π – связи. Угол связи σ составляет 180° , а две π – связи распологаются перпендикулярно друг друга. Форма молекул линейная (плоская).

B молекуле бензола C_6H_6 шесть атомов углерода связаны σ – связью. Угол связи составляет 120° . Состояние гибридизации sp^2 . В молекуле образуется

6 π – связь, которая принадлежит шести атомам углерода.

Для пространственного изображения молекул органических веществ важно знать, к какому классу веществ относится соединение, угол связи, форму молекул.

Например: Метан (CH₄) относится к классу алканов. Атомы находятся в состоянии гибридизации sp^3 , значит угол связи $109,28^\circ$, форма молекулы тетраэдр, между атомами одинарная σ – связь. Для построения молекулы шаростержневым способом нужно заготовить 4 шара из пластилина. Один шар (атом углерода) большего размера и черного цвета, а три атома (водорода) одинакового размера красного цвета. Соединить шары металлическими стержнями под углом $109,28^\circ$.

Полусферическая модель атома изготавливается также, только шары соединяются методом вдавливания друг в друга.

Вопросы для закрепления теоретического материала к лабораторной работе:

- 1. Какие вещества называют органическими?
- 2. В чем отличие органических веществ от неорганических веществ?
- 3. Что общего и в чем различия в строении а) гомологов, б) изомеров
- 4. Определите молекулярную формулу вещества, если оно содержит С-20%, Н-80%, а плотность вещества по водороду примерно равна 15.

Инструкция по выполнению лабораторной работыЗадания для лабораторной работы:

Задание № 1. Составьте сокращенные структурные формулы углеводородов: метана, этана, пропана, бутана, изобутана, пентана и всех его изомеров.

Задание № 2. Изготовьте модели молекул углеводородов: метана, этана, пропана, бутана, изобутана, пентана и всех его изомеров.

Модель молекулы метана. Соберите модель молекулы метана, используя для этого спичкии пластилин. Для этого из пластилина (в наборе 16 шариков) выберите четыре шарика, а из пластилина (в наборе 7 шариков) – один шарик. В качестве стержней можно использовать спички. Учтите, что в молекуле метана угол между химическими связями С–Н составляет 109°28', т. е. молекула имеет тетраэдрическое строение (см. рис. 1).

Модель молекулы этана. Соберите модель молекулы этана, используя для этого спички и пластилин. Учтите, что в молекуле этана угол между химическими связями С–H составляет $109^{\circ}28'$, а углерод-углеродные связи L (C-C) = 0.154 нм. (см. рис. 2).

Модель молекулы пропана. Соберите модель молекулы пропана, используя для этого спички и пластилин.

Модели молекул бутана и изобутана. Соберите модель молекулы н-бутана, используя пластилин. Подумайте и переделайте модель н-бутана в модель молекулы изобутана. Учтите, что в бутане атомы углерода расположены по отношению друг к другу под углом 109°, т. е. углеродная цепь должна иметь зигзагообразное строение. В молекуле изобутана все связи центрального атома углерода направлены к вершинам правильного тетраэдра. Сравните строение этих углеводородов.

Модели молекул пентана и всех его изомеров. Соберите модель молекулы н-пентана и всех его изомеров последовательно, используя пластилин.

Методика анализа результатов, полученных в ходе лабораторной работы

- 1. Используя инструкцию по выполнению лабораторной работы, выполните задания.
- 2. Собирать модель следующего органического соединения следует начинать только после полной сборки предыдущей модели.

Контрольные вопросы

- 1. Какие бывают органические соединения по строению углеводородного скелета?
- 2. Какие бывают органические соединения по наличию функциональных групп?
- 3. Какие вещества называются гомологами?
- 4. Какие бывают пространственные формы молекул органических веществ?
- 5. Какой процесс называется гибридизацией?

7. Дайте понятие σ и π связи

Порядок выполнения отчета по лабораторной работе

- 1. В тетради для практических занятий и лабораторных работ напишите номер, название и учебную цель занятия.
- 2. Ответьте на вопросы для закрепления теоретического материала к практическому занятию.
- 3. Выполните задания № 1 и № 2. Сколько моделей: а) гомологов, б) изомеров было собрано во время практического занятия?
- 4. Заполните таблицу.
- 5. Запишите вывод о проделанной работе, отразите, на сколько успешно Вы справились с учебными задачами практического занятия и реализованы ли образовательные результаты, заявленные во ФГОС третьего поколения.

Образец отчета по лабораторной работе

«Составление моделей молекул органических веществ».

Учебная цель: научиться составлять модели молекул различной сложности. Ответы на вопросы для закрепления теоретического материалак

лабораторной работе
1.
2.
3.
4.

№ задания	Название вещества	Шаростержневая модель молекулы	Сокращенная структурная формула	Молекулярная формула

Вывод: Выполнив задания лабораторной работы я (см. учебные задачи и образовательные результаты, заявленные во Φ ГОС третьего поколения).....

Литература:

- 1. Габриелян О.С. Химия: учебник для студентов профессиональных учебных завелений –М., 2013.
- 2. Ерохин Ю.М. Химия: учеб. для студ. учреждений сред. проф. образования / Ю.М. Ерохин.-М.: Академия,2011. с. 170-360.

Практическое занятие № 3. Спирты. Альдегиды. Кетоны.

Учебная цель: практически познакомиться с важнейшими химическими свойствами альдегидов

Учебные задачи:

- 1. Провести эксперимент, соблюдая правила по технике безопасности.
- 2.Записать уравнения химических реакций в молекулярном виде.

Образовательные результаты, заявленные во ФГОС третьего поколения:

Студент должен

иметь практический опыт: осуществления химических реакций характерных для альдегидов;

уметь: проводить качественные реакции на распознавание представителей альдегидов; **знать:** строение молекул, физические и химические свойства, способы получения иприменение альдегидов;

владеть: навыками экспериментальной работы в химической лаборатории.

Задачи практической работы:

- 1. Повторить теоретический материал по теме практической работы.
- 2. Ответить на вопросы для закрепления теоретического материала.
- 3. Выполнить опыты.
- 4. Оформить отчет.

Оснащение занятия (средства обучения):

- 1. Сборник методических указаний для студентов по выполнению практических занятий и лабораторных работ по учебной дисциплине «Химия».
- 2. Тетрадь для практических работ в клетку.
- 3. Ручка.
- 4. Простой карандаш.
- 5. Линейка.
- 6. Оборудование и реактивы: штатив с пробирками, спиртовка, спички,

Время выполнения 2 часа

Краткие теоретические материалы по теме практической работы

 $\underline{Aльдегиды}$ — органические вещества, молекулы которых содержат карбонильную группу С=0, соединенную с атомом водорода и углеводородным радикалом.

Общая формула альдегидов имеет вид

Н
В простейшем альдегиде — формальдегиде — роль углеводородного радикала играет другой атом водорода:

Карбонильную группу, связанную с атомом водорода, часто называют альдегидной:

$$-c \stackrel{H}{\sim}_0$$

Органические вещества, в молекулах которых карбонильная группа связана с двумя углеводородными радикалами, называют кетонами.

Очевидно, общая формула кетонов имеет вид

R2

Карбонильную группу кетонов называют кетогруппой

В простейшем кетоне — ацетоне — карбонильная группа связана с двумя метильными радикалами:

O

Π

CH3-C-CH3

ацетон

Низшие члены ряда альдегидов и кетонов (формальдегид, уксусный альдегид, ацетон) растворимы в воде неограниченно. Их температуры кипения ниже, чем у соответствующих спиртов (см. табл. 5). Это связано с тем, что в молекулах альдегидов и кетонов в отличие от спиртов нет подвижных атомов водорода и они не образуют ассоциатов за счет водородных связей. Низшие альдегиды имеют резкий запах, у альдегидов, содержащих от четырех до шести атомов углерода в цепи, неприятный запах, высшие альдегиды и кетоны обладают цветочными запахами и

применяются в парфюмерии.*Химические свойства* предельных альдегидов и кетонов

Присоединение водорода к молекулам альдегидов происходит по двойной связи в карбонильной группе. Продуктом гидрирования альдегидов являются первичные спирты, кетонов — вторичные спирты. Так, при гидрировании уксусного альдегида на никелевом катализаторе образуется этиловый спирт, при гидрировании ацетона — пропанол-2.Гидрирование альдегидов — реакция восстановления, при которой понижается степень окисления атома углерода, входящего в карбонильную группу.

Краткие теоретические материалы по теме лабораторной работы

Альдегиды и кетоны относятся к **карбонильным** органическим соединениям. Карбонильными соединениями называют органические вещества, в молекулах которых имеется группа >C=O (карбонил или оксогруппа).

Общая формула карбонильных соединений:

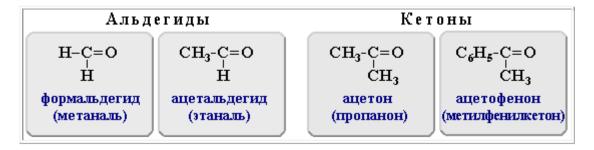
В зависимости от типа заместителя X эти соединения подразделяют на: альдегиды (X = H); кетоны (X = R, R'); карбоновые кислоты (X = OH) и их производные (X = OR, NH_2 , NHR, Hal и т.д.). **Альдегиды** - органические соединения, в молекулах которых атом углерода карбонильной группы (карбонильный углерод) связан с атомом

водорода. Общая формула: R-CH=О или

$$R-C$$
 H
 $R=H$, алкил, арил

Функциональная

группа


_CH=C

называется

альдегидной.

Кетоны - органические вещества, молекулы которых содержат карбонильную группу, соединенную с двумя углеводородными радикалами. Общие формулы: $\mathbf{R}_2\mathbf{C}=\mathbf{O}$, $\mathbf{R}-\mathbf{CO}-\mathbf{R}'$ или

$$\begin{bmatrix} \mathbf{R} - \mathbf{C} - \mathbf{R}' \\ \mathbf{0} \end{bmatrix}$$
 R, **R**' = алкил, арил

Атомы углерода и кислорода в карбонильной группе находятся в состоянии sp^2 -гибридизации. Углерод своими sp^2 -гибридными орбиталями образует 3 - связи (одна из них - связь С-Ф), которые располагаются в одной плоскости под углом около 120° друг к другу. Одна из трех sp^2 -орбиталей кислорода **122.4** участвует в -связи С-О, две другие содержат неподеленнные электронные пары. -Связь образована *p*-электронами атомов углерода и кислорода. □

В молекулах альдегидов и кетонов отсутствуют атомы водорода, способные к образованию водородных связей. Поэтому их температуры кипения ниже, чем у соответствующих спиртов. Метаналь (формальдегид) - газ, альдегиды C_2 – C_5 и кетоны C_3 – C_4 - жидкости, высшие - твердые вещества. Низшие гомологи растворимы в воде, благодаря образованию водородных связей между атомами водорода молекул воды и карбонильными атомами кислорода. С увеличением углеводородного радикала растворимость в воде падает.

Альдегиды — сложные органические вещества, состоящие из углеводородного радикала или водорода связанного с функциональной группой - СОН. Общая формула альдегидов: $C_nH_{2n}O$. Названия альдегидов производят от названий кислот, в которые они превращаются при окислении или по международной системе.

Реакции окисления

Альдегиды способны не только восстанавливаться, но и окисляться. При окислении альдегиды образуют карбоновые кислоты. Схематично этот процесс можно представить так:

$$R-C \xrightarrow{O} \xrightarrow{[O]} R-C \xrightarrow{O}$$

Из пропионового альдегида (пропаналя), например, образуется пропионовая

Альдегиды окисляются даже кислородом воздуха и такими слабыми окислителями, как аммиачный раствор оксида серебра. В упрощенном виде этот процесс можно выразить уравнением реакции:

$$R-C \stackrel{O}{\mapsto} + Ag_2O \rightarrow R-C \stackrel{O}{\mapsto} + 2Ag$$
 Например:
$$CH_3-C \stackrel{O}{\mapsto} + Ag_2O \rightarrow CH_3-C \stackrel{O}{\mapsto} + 2Ag$$
 уксусный альдегид уксусная кислота этановая кислота

Более точно этот процесс отражают уравнения:

$$R-C \stackrel{O}{\underset{H}{=}} + 2[Ag(NH_3)_2]OH \longrightarrow R-C \stackrel{O}{\underset{NH_4}{=}} + 2Ag + 3NH_3 + H_2O$$
 альдегид соль карбоновой кислоты

Если поверхность сосуда, в котором проводится реакция, была предварительно обезжирена, то образующееся в ходе реакции серебро покрывает ее тонкой ровной пленкой. Получается замечательное серебряное зеркало. Поэтому эту реакцию называют реакцией «серебряного зеркала». Ее широко используют для изготовления зеркал, серебрения украшений и елочных игрушек.

Окислителем альдегидов может выступать и свежеосаж-денный гидроксид меди(II). Окисляя альдегид, Cu2+ восстанавливается до Cu4. Образующийся в ходе реакции гидроксид меди(I) CuOH сразу разлагается на оксид меди(I) красного цвета и воду.

Эта реакция, так же как реакция «серебряного зеркала», используется для обнаружения альдегидов. Кетоны не окисляются ни кислородом воздуха, ни таким слабым окислителем, как аммиачный раствор оксида серебра.

Альдегиды вступают в реакцию поликонденсации. Изучая фенолы, мы подробно рассмотрели взаимодействие метаналя (формальдегида) с фенолом приводящее к образованию фенолформальдегидных смол.

Способы получения

Альдегиды и кетоны могут быть получены окислением или дегидрированием спиртов. Еще раз отметим, что при окислении или дегидрировании первичных спиртов могут быть получены альдегиды, а вторичных спиртов — кетоны.

Отдельные представители альдегидов и их значение

Формальдегид, (метаналь, муравьиный альдегид) НСНО — бесцветный газ с резким запахом и температурой кипения -21 °C, хорошо растворим в воде. Формальдегид ядовит! Раствор формальдегида в воде (40%) называют формалином и применяют для дезинфекции. В сельском хозяйстве формалин используют для протравливания семян, в кожевеннойпромышленности — для обработки кож. Формальдегид используют для получения уротропина — лекарственного вещества. Иногда спрессованный в виде брикетов уротропин применяют в качестве горючего (сухой спирт). Большое количество формальдегида расходуется при получении фенолформальдегидных смол и некоторых других веществ.

Уксусный альдегид (этаналь, ацетальдегид) СН₃СНО — жидкость с резким, неприятным запахом и температурой кипения 21 °C, хорошо растворим в воде. Из уксусного альдегида в промышленных масштабах получают уксусную кислоту и ряд других веществ, он используется для производства различных пластмасс и ацетатного волокна. Уксусный альдегид ядовит

Вопросы для закрепления теоретического материала к практической работе:

Вопросы для устного опроса по теме «Альдегиды и кетоны».

- 1. Какая группа называется карбонильной?
- 2. Назовите простейшее карбонильное соединение.
- 3. Какие органические вещества называются альдегидами?
- 4. Какие органические вещества называются кетонами?
- 5. Какие типы изомерии характерны для альдегидов?
- 6. Какой простейший альдегид имеет изомеры?
- 7. Чему равна степень окисления атома углерода карбонильной группы в кетонах?
- 8. Даны вещества: алкан, альдегид, спирт с одинаковым числом атомов углерода.

Расположите вещества в порядке увеличения температуры кипения.

- 9. Какое вещество можно использовать для получения альдегидов из первичных спиртов?
- 10. Уксусный альдегид продукт окисления
- 11. Какой альдегид можно получить реакцией Кучерова?
- 12. Что получается при окислении альдегидов?
- 13. Что получается при окислении кетонов?
- 14. Что образуется при восстановлении альдегидов?
- 15. Что образуется при восстановлении кетонов?

- 16. Для какого альдегида характерна реакция полимеризации? Что при этом получают?
- 17. Какой альдегид с фенолом вступает в реакцию поликонденсации? Что при этом получают?
- 18. Какие реакции надо провести, чтобы отличить альдегид от кетона?

Инструкция по выполнению практической работы Опыт 1.

Окисление этаналя свежеприготовленным аммиачным раствором гидроксида серебра.

Берем сухую чистую пробирку.

Наливаем в нее 1 мл раствора нитрата серебра AgNO₃.

Приливаем по каплям раствор аммиака NH₄OH до тех пор, пока образующийся сначалаосадок полностью не растворится.

В пробирку добавляем раствор альдегида, полученный в Задаче І.

Зажигаем спиртовку.

ТБ: спиртовку от другой спиртовки зажигать нельзя!

Пробирку с полученной смесью закрепляем в держателе.

Слегка нагреваем в пламени спиртовки.

ТБ: пробирку не вносим в пламя, а совершаем круговые движения вокруг пламени. Наблюдаем образование металлического серебра на стенках пробирки в виде зеркальногослоя.

Пламя спиртовки гасим, накрывая его колпачком.

Пробирку с держателем ставим в штатив.

Приводим рабочее место в порядок.

Опыт 2.

Окисление этаналя гидроксидом меди (II).

Берем вторую часть раствора альдегида из Задачи І. Приливаем

в пробирку раствора сульфата меди (II) CuSO4.

Приливаем раствор гидроксида натрия NaOH до появления студенистого осадка.ТБ:

со щелочью обращаемся аккуратно! Зажигаем спиртовку.

ТБ: спиртовку от другой спиртовки зажигать нельзя!

Закрепляем пробирку в держатель.

Равномерно прогреваем пробирку.

Верхнюю часть содержимого пробирки нагреваем в пламени спиртовки до начала кипения.

Наблюдаем образование сначала желтого гидроксида меди (I), который при нагревании разлагается с образованием оксида меди (I) красного цвета.

Пламя спиртовки гасим, накрывая его колпачком.

Пробирку с держателем ставим в штатив.

Приводим рабочее место в порядок.

Опыт 3.Взаимодействие формальдегида с гидросульфитом натрия.Контрольные вопросы

1. Составьте уравнения реакций, которые надо провести для осуществления следующих превращений:

пропанол- $1 \to A \to B \to 2,3$ -диметилбутан.

- 2. Напишите структурные формулы следующих соединений: а) 2-метилпентанол-3; б) 2,4-диметилпентанол-2; в) этандиол-1,1; г) 2-метилбутин-3-ол-2; д) 2-метилбутанол-1.
- 3. Напишите и назовите, структурные формулы изомерных альдегидов и кетонов состава: С $_{6\ 12}^{\rm H}$ О.
- 4. Напишите структурные формулы (и назовите) кетонов, изомерных изовалериановому альдегиду.
- 5. Синтезируйте изомасляную кислоту из ацетона.
- 6. Какие вещества образуются, если взаимодействуют сле-дующие соединения: *втор*-бутилмагнийбромид и диэтилкетон?

- 7. Напишите структурные формулы соединений:
- а) хлоруксусная кислота; б) 3-метилпентановая кислота;
- в) пропандиовая кислота; г) 2,2-диметилпропановая кислота;д) янтарная кислота.
 - 8. Какое соединение образуется, если на изомасляную кислоту подействовать пятихлористым фосфором и полученное вещество обработать аммиаком?
 - 9. Какое соединение образуется при гидролизе изопропилового эфира и валериановой кислоты?

Порядок выполнения отчета по практическому занятию

- 1.В тетради для практических работ напишите номер, название и учебную цель занятия.
- 2.Ответьте на вопросы для закрепления теоретического материала к практической работе.
- 3.Выполните эксперименты, согласно инструкции по выполнению практической работы.
- 4. Запишите наблюдения в таблицу.

Что делаю	Что наблюдаю	Уравнения реакций
		и выводы

- 5. Запишите вывод о проделанной работе, отразите, на сколько успешно Вы справились с учебными задачами лабораторной работы и реализованы ли образовательные результаты, заявленные во $\Phi\Gamma$ OC третьего поколения.
- 6. Подготовьтесь к защите работы

Литература:

- 1. Габриелян О.С. Химия: учебник для студентов профессиональных учебных заведений –М.,2013.
- 2. Ерохин Ю.М. Химия: учеб. для студ. учреждений сред. проф. образования / Ю.М. Ерохин.-М.: Академия, 2011. с. 170-360.

Практическое занятие № 4. Карбоновые кислоты и их производные.

Учебная цель:

- 1. практически изучить лабораторный способ получения уксусной кислоты и еè химические свойства;
- 2. изучить характерные свойства жиров и сложных эфиров

Учебные задачи:

- 1. Провести эксперимент, соблюдая правила по технике безопасности.
- 2.Записать уравнения химических реакций в молекулярном виде.

Образовательные результаты, заявленные во ФГОС третьего поколения:

Студент должен

иметь практический опыт: осуществления химических реакций характерных для органических кислот и жиров;

уметь: проводить качественные реакции на распознавание представителей кислот; **знать:** строение молекул, физические и химические свойства, способы получения иприменение органических кислот, жиров и сложных эфиров;

владеть: навыками экспериментальной работы в химической лаборатории.

Задачи лабораторной работы:

- 1. Повторить теоретический материал по теме практической работы.
- 2.Ответить на вопросы для закрепления теоретического материала.
- 3.Выполнить опыты.
- 4.Оформить отчет.

Оснащение занятия (средства обучения):

- 1. Сборник методических указаний для студентов по выполнению практических занятий и лабораторных работ по учебной дисциплине «Химия».
- 2. Тетрадь для практических занятий и лабораторных работ в клетку.
- 3.Ручка.
- 4. Простой карандаш.
- 5. Линейка.
- 1. Оборудование и реактивы: штатив с пробирками, спиртовка, ацетат натрия, концентрированная серная кислота, пробирки с отверстиями, стеклянные трубки, вода, химические стаканы, лакмус, карбонат кальция, твердый жир, подсолнечное масло, этанол, раствор перманганата калия, раствор бромной воды.

Время выполнения 4 часа

Краткие теоретические материалы по теме работы

Карбоновые кислоты - органические соединения, в молекулах которых содержатся одна или несколько карбоксильных групп, соединенных с углеводородным радикалом или атомомводорода. Классификация карбоновых кислот

Получение: В лаборатории карбоновые кислоты можно получить из их солей, действуя на них серной кислотой при нагревании, например:

$$2CH_3$$
- $COONa$ + H_2SO_4 \rightarrow $2CH_3$ - $COOH$ + Na_2SO_4

В промышленности получают окислением углеводородов, спиртов и альдегидов.

Химические свойства:

- 1.Из-за смещения электронной плотности от гидроксильной группы О–H к сильно поляризованной карбонильной группе C=O молекулы карбоновых кислот способны к электролитической диссоциации: R–COOH \rightarrow R– COO^- + H^+ Сила карбоновых кислот в водном растворе невелика.
- 2. Карбоновые кислоты обладают свойствами, характерными для минеральных кислот. Они реагируют с активными металлами, основными оксидами, основаниями, солями слабых кислот.

$$2CH_3COOH + Mg \rightarrow (CH_3COO)_2Mg + H_2$$

$$2CH_3COOH + CaO \rightarrow (CH_3COO)_2Ca + H_2O$$

 $H-COOH + NaOH \rightarrow H-COONa + H_2O$
 $2CH_3CH_2COOH + Na_2CO_3 \rightarrow 2CH_3CH_2COONa + H_2O + CO_2$
 $CH_3CH_2COOH + NaHCO_3 \rightarrow CH_3CH_2COONa + H_2O + CO_2$

Карбоновые кислоты слабее многих сильных минеральных кислот (HCl, H₂SO₄ и т.д.) ипоэтому вытесняются ими из солей:

 $CH_3COONa + H_2SO_4(конц.) \rightarrow CH_3COOH + NaHSO_4$

- 3. Образование функциональных производных:
- а) при взаимодействии со спиртами (в присутствии концентрированной H_2SO_4) образуются сложные эфиры. Образование сложных эфиров при взаимодействии кислоты и спирта в присутствии минеральных кислот называется реакцией этерификации (ester с латинского"эфир").

$$CH_3$$
— C — OH + HO — CH_3 \leftrightarrows CH_3 — C — OCH_3 + H_2O уксусная кислота метиловый метиловый эфир спирт уксусной кислоты

Общая формула сложных эфиров R— \tilde{C} —OR' где R и R' — углеводородные радикалы: в сложных эфирах муравьиной кислоты — формиатах —R=H.

Обратной реакцией является гидролиз (омыление) сложного эфира:

Как видно, процесс этерификации обратимый.

б) при воздействии водоотнимающих реагентов в результате межмолекулярной дегидратации образуются ангидриды

$$CH_3$$
— C — $OH + HO$ — C — CH_3 $\rightarrow CH_3$ — C — O — C — $CH_3 + H_2O$

Галогенирование. При действии галогенов (в присутствии красного фосфора) образуются α -галогензамещенные кислоты:

$$\begin{array}{c} \alpha \ CH_3-CH_2- \\ COOH + \ Br_2 \longrightarrow CH_3- \ CH-COOH + HBr \\ | \\ Br \quad \alpha \quad \text{-бромпропионовая} \\ \text{кислота}) \end{array}$$
 кислота(2-бромпропановая кислота)

Применение: в пищевой и химической промышленности (производство ацетилцеллюлозы,из которой получают ацетатное волокно, органическое стекло, кинопленку; для синтеза красителей, медикаментов и сложных эфиров).

Вопросы для закрепления теоретического материала к практической работе:

- 1. Какие органические соединения относятся к карбоновым кислотам?
- 2. Почему среди карбоновых кислот нет газообразных веществ?
- 3. Чем обусловлены кислотные свойства карбоновых кислот?
- 4. Почему изменяется цвет индикаторов в растворе уксусной кислоты?
- 5. С какими металлами реагирует уксусная кислота?

Инструкция по выполнению практической работы

Задания для практической работы:

Задание № 1. Получить уксусную кислоту

Задание № 2. Исследовать свойства уксусной кислоты.

Задание № 3. Исследовать свойства жиров и сложных эфиров.

Инструкция по выполнению практической работы

1. Ознакомьтесь с правилами по технике безопасности при работе в химической лаборатории и распишитесь в журнале по ТБ.

2. Выполните опыт № 1 Получение уксусной кислоты

- Поместите в пробирку 3-5 г ацетата натрия и прибавьте немного концентрированной серной кислоты.
- Пробирку закройте пробкой с газоотводной трубкой, свободный конец которой опустить в пустую пробирку, находящуюся в стакане с холодной водой.
- Нагревайте смесь до тех пор, пока в пробирке приемнике не соберется немного уксусной кислоты.
- 3. Выполните опыт № 2 Испытание раствора уксусной кислоты лакмусом.
 - Разбавьте полученную уксусную кислоту небольшим количеством воды и прибавьте несколько капель синего лакмуса или опустите в пробирку индикаторную бумажку.
- 4. Выполните опыт № 3 Взаимодействие уксусной кислоты с магнием.
 - В пробирку с раствором уксусной кислоты бросьте кусочек ленты или стружки магния.
 - Подожгите выделяющийся газ.
- 5. Выполните опыт № 4 Взаимодействие уксусной кислоты с карбонатом кальция.
- В пробирку насыпьте немного мела (карбоната кальция) и прилейте раствор уксусной сиспоты
- 6. Выполните опыт № 5. Наблюдение различной растворимости жиров в воде и органических растворителях.
- В 4 пробирки поместите: 1-1 мл холодной воды; 2-1 мл горячей воды; 3-1 мл этилового спирта; 4-1 мл бензина. Добавьте в каждую из них пипеткой по 2-3 капли подсолнечного масла. Встряхните пробирки.
 - 7. Выполните опыт № 6.**Отношение жиров к раствору перманганата калия и бромной** волы.

-используйте материал из пробирок 1 и 2 из опыта 6: в 1 —ю добавьте раствор перманганата калия, а во 2 —ю бромную воду.

8. Повторите опыт 6 и 7 с твердым жиром.

Методика анализа результатов, полученных в ходе практической работы

- 1. Используя инструкцию по выполнению лабораторной работы, проведите опыты, соблюдая правила техники безопасности при работе в кабинете химии.
- 2. Следующий опыт следует начинать только после полного разбора предыдущего опыта.
- 3. Порядок выполнения отчета по лабораторной работе
- 4. В тетради для практических занятий и лабораторных работ напишите номер, название и учебную цель работы.
- 5. Ответьте на вопросы для закрепления теоретического материала к лабораторной работе.
- 6. Выполните опыты № 1, согласно инструкции по выполнению лабораторной работы. Запишите наблюдения в таблицу. Напишите уравнение реакции взаимодействия ацетата натрия с серной кислотой
- 7. Выполните опыты № 2, согласно инструкции по выполнению лабораторной работы. Запишите наблюдения в таблицу.
- 8. Выполните опыты № 3, согласно инструкции по выполнению лабораторной работы. Запишите наблюдения в таблицу. Напишите уравнение реакции в молекулярном и сокращенном ионном видах.
- 9. Выполните опыты № 4 согласно инструкции по выполнению лабораторной работы. Запишите наблюдения в таблицу. Напишите уравнение реакции в молекулярном и сокращенном ионном видах.
- 10. Запишите вывод о проделанной работе, отразите, на сколько успешно Вы справились с учебными задачами лабораторной работы и реализованы ли образовательные результаты, заявленные во ФГОС третьего поколения.

Контрольные вопросы

1. Как осуществить превращения:

Тристеарат---- стеарат натрия -----стеариновая кислота? Запишите соответствующие уравнения реакций.

- 2. Почему не рекомендуется мыть посуду стиральным порошком?
- 3. Почему мыло, попавшее на слизистую оболочку глаза, вызывает жжение?
- 4. Жидким или твердым мылом выгоднее пользоваться хирургам?
- 5. Как различить два розовых мутноватых раствора фенола и мыла? Запишите необходимые уравнения реакций и отметьте их условия и признаки.
- 6. Почему реакцию нейтрализации уксусной кислоты следует проводить в присутствии индикатора?
- 7. Что такое «ледяная» уксусная кислота?
- 8. Напишите три уравнения химически х реакций, демонстрирующих:
- А) сходство химических свойств муравьиной и уксусной кислот;
- Б) отличие муравьиной кислоты от уксусной;
- В) сходство муравьиной и уксусной кислот с неорганическими.

Образец отчета полабораторной работе

«Получение и свойства карбоновых кислот. Свойства жиров и сложных эфиров.».

Учебная цель: формировать умения проводить наблюдения и делать выводы, записывать уравнения соответствующих реакций в молекулярном и ионном видах.

	E	ы для закреплеі 			E .	L L		
2								
٥		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • •

Название опыта	Рисунок того что делаете	Наблюдения и их объяснения	Уравнения реакций
	R		
Свойства уксусной кислоты			

Свойства		
жидкого		
жира		
Свойства		
твѐрдого		
жира		

Вывод: Выполнив задания лабораторной работы я.... (см. учебные задачи и образовательные результаты, заявленные во $\Phi \Gamma O C$ третьего поколения). *Литература:*

- 1. Габриелян О.С. Химия: учебник для студентов профессиональных учебных заведений –М.,2013.
- 2. Ерохин Ю.М. Химия: учеб. для студ. учреждений сред. проф. образования / Ю.М. Ерохин.-М.: Академия,2011. с. 170-360.

Практическое занятие № 5. Жиры. Белки. Углеводы.

Учебная цель: практически познакомиться с важнейшими химическими свойствами глюкозы, сахарозы и крахмала, белков, жиров и аминокислот.

Учебные задачи:

- 1. Провести эксперимент, соблюдая правила по технике безопасности.
- 2.Записать уравнения химических реакций в молекулярном виде.

Учебные задачи:

- 1. Познакомиться с важнейшими химическими свойствами белков.
- 2. Практически исследовать процессы растворения белка в воде, необратимой денатурации белков.
- 3. Познакомиться с качественными реакциями на белки, научиться распознавать их.

Образовательные результаты, заявленные во ФГОС третьего поколения: студент должен

иметь практический опыт: исследования свойств белка;

уметь: проводить эксперимент, соблюдая правила по технике безопасности;

знать: строение молекул, физические и химические свойства белков; владеть:

навыками экспериментальной работы в химической лаборатории. Задачи

лабораторного занятия:

- 1. Повторить теоретический материал по теме практического занятия.
- 2. Ответить на вопросы для закрепления теоретического материала.
- 3. Выполнить эксперименты.
- 4. Оформить отчет.

Обеспеченность занятия (средства обучения):

- 1. Сборник методических указаний для студентов по выполнению практических занятий и лабораторных работ по учебной дисциплине «Химия».
- 2. Тетрадь для практических занятий и лабораторных работ в клетку.
- 3. Ручка.
- 4. Простой карандаш.
- 5. Линейка.
- 6. Раствор белка, растворы сульфата меди (II) и щелочи, азотная кислота, водный раствор аммиака «нашатырный спирт», шерсть; штатив с пробирками, прибор для нагревания, держатель, тигельные щипцы, спички.

Время выполнения 2 часа

Краткие теоретические и учебно-методические материалы по теме лабораторной работы:

Пептиды и белки представляют собой высокомолекулярные органические соединения,построенные из остатков α- аминокислот, соединенных между собой пептидными связями.

Ни один из известных нам живых организмов не обходится без белков. Белки служат питательными веществами, они регулируют обмен веществ, исполняя роль ферментов — катализаторов обмена веществ, способствуют переносу кислорода по всему организму и его поглощению, играют важную роль в функционировании нервной системы, являются механической основой мышечного сокращения, участвуют в передаче генетической информации и т.д. Как видно, функции белков в природе универсальны. Белки входят в состав мозга, внутренних органов, костей, кожи, волосяного покрова и т.д. Основным источником

- α аминокислот для живого организма служат пищевые белки, которые в результате ферментативного гидролиза в желудочно-кишечном тракте дают α аминокислоты. Многие
- α- аминокислоты синтезируются в организме, а некоторые необходимые для синтеза белков α-аминокислоты не синтезируются в организме и должны поступать извне. Такие аминокислоты называются незаменимыми. К ним относятся валин, лейцин, треонин, метионин, триптофан и др. При некоторых заболеваниях человека перечень незаменимых аминокислот расширяется.

Пептиды и белки различают в зависимости от величины молекулярной массы. Условно считают, что пептиды содержат в молекуле до 100 (соответствует молекулярной массе до 10000), а белки - свыше 100 аминокислотных остатков (молекулярная масса от 10000 до нескольких миллионов). При этом в пептидах различают олигопептиды, содержащие в цепи не более 10 аминокислотных остатков, и полипептиды, содержащие до 100 аминокислотных остатков.

Первичная структура белка - специфическая аминокислотная последовательность, т.е. порядок чередования α -аминокислотных остатков в полипептиднойцепи.

Вторичная структура белка - конформация полипептидной цепи, т.е. способ скручивания цепи в пространстве за счет водородных связей между группами NH и CO. Одна из моделей вторичной структуры — спираль.

Третичная структура белка - трехмерная конфигурация закрученной спирали в пространстве, образованная за счет дисульфидных мостиков –S–S– между цистеиновыми остатками и ионных взаимодействий.

Четвертичная структура белка - структура, образующаяся за счет взаимодействия между разными полипептидными цепями. Четвертичная структура характерна лишь для некоторых белков, например гемоглобина.

Химические свойства

- 1) Денатурация. Утрата белком природной (нативной) конформации, сопровождающаяся обычно потерей его биологической функции, называется денатурацией. С точки зрения структуры белка это разрушение вторичной и третичной структур белка, обусловленное воздействием кислот, щелочей, нагревания, радиации и т.д. Первичная структура белка при денатурации сохраняется. Денатурация может быть обратимой (так называемая, ренатурация) и необратимой. Пример необратимой денатурации при тепловом воздействии свертывание яичного альбумина при варке яиц.
- 2) **Гидролиз белков** разрушение первичной структуры белка под действием кислот, щелочей или ферментов, приводящее к образованию α аминокислот, из которых он был составлен.
- 3) Качественные реакции на белки:
- а) **Биуретовая реакция** фиолетовое окрашивание при действии солей меди (II) в щелочном растворе. Такую реакцию дают все соединения, содержащие пептидную связь.
- б) **Ксантопротеиновая реакция** появление желтого окрашивания при действии концентрированной азотной кислоты на белки, содержащие остатки ароматических аминокислот (фенилаланина, тирозина).

Вопросы для закрепления теоретического материала к практическому занятию:

- 1. Что такое денатурация? Укажите условия денатурации белковых молекул.
- 2. Какие группы атомов и типы связей наиболее характерны для большинства белковых молекул?
- 3. Как можно доказать наличие белков в продуктах питания, в шерстяных и шелковых тканях?
- 4. Какие вещества образуются при гидролизе белков в организме?
- 5. Чем отличается гидролиз белков от гидролиза полисахаридов?

Инструкция по выполнению лабораторной работы

- 1. Ознакомьтесь с правилами по технике безопасности при работе в химической лаборатории и распишитесь в журнале по ТБ.
- 2. Выполните эксперименты. Свойства белков:
- а) В пробирку налейте 2 мл раствора белка и добавьте 2 мл раствора щелочи, а затем несколько капель раствора медного купороса (сульфата меди (II)).

- б) В пробирку с 2 мл раствора белка добавьте несколько капель азотной кислоты. Нагрейте содержимое пробирки. Охладите смесь и добавьте к ней по каплям 2–3 мл нашатырного спирта.
- в) Подожгите несколько шерстяных нитей. Охарактеризуйте запах горящей шерсти.
- г) К 3—4 мл раствора белка в воде добавьте несколько капель раствора медного купороса (сульфата меди (II)).

Методика анализа результатов, полученных в ходе занятия

- 1. Используя инструкцию по выполнению практического занятия, проведите эксперименты, соблюдая правила техники безопасности при работе в кабинете химии.
- 2.Следующий эксперимент следует начинать только после полного разбора предыдущего эксперимента.

Контрольные вопросы

- 1. Как доказать на примере белка куриного яйца, сваренного вкрутую, или пленки, снятой с кипяченого молока, что в состав белков входят атомв углерода, водорода и кислорода? Ответ поясните.
- 2. Как можно обнаружить или отличить от других веществ раствор белка? Какие явления происходят с белком:
- А) при нагревании;
- Б) при добавлении формальдегида?В) соли;
- Г) щелочи или кислоты?
 - 3. Как различить растворы белка, уксусной кислоты, мыла и подсолнечного масла?
 - 4. Мясо и рыба содержат много белка, и при порче этих продуктов выделяются газы аммиак и сероводород. При проверке этих продуктов на свежесть кусочек мяса или рыбы помещают в химический стакан, накрывают листом белой фильтровальной бумаги и через несколько часов в середину капают реактивы. Назовите эти реактивы. Напишите уравнения соответствующих реакций.

Порядок выполнения отчета по занятию

- 1. В тетради для практических занятий и лабораторных работ напишите номер, название и учебную цель занятия.
- 2. Ответьте на вопросы для закрепления теоретического материала к практическому занятию.
- 3. Выполните эксперименты, согласно инструкции по выполнению практического занятия. Запишите наблюдения в таблицу.
- 4. Запишите вывод о проделанной работе, отразите, на сколько успешно Вы справились с учебными задачами практического занятия и реализованы ли образовательные результаты, заявленные во ΦГОС третьего поколения.

Образец отчета по занятию

«Растворение белков в воде и их коагуляция. Обнаружение белка в молоке и курином яйце. Денатурация белка. Цветные реакции белков».

Учебная цель: отработать навыки экспериментальной работы, соблюдая правила техники безопасности при работе в кабинете химии

	опросы ол 	L		L	L				
•••									
 •••••	• • • • • • • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • •	 	•••••	• • • • • • • • •	• • • • • • • • •	••••

5.

o.

Название опыта	Рисунок того что делаете	Наблюдения и их объяснения
Растворение белков в воде	R	
Цветные реакции белков Биуретовая реакция	A	
Ксантопротеиновая реакция		
Обнаружение белков в молоке и в мясном бульоне		
Денатурация раствора белка куриного яйца спиртом	R	
растворами солей тяжелых металлов	R	
при нагревании		

Вывод: Выполнив задания занятия я.... (см. учебные задачи и образовательные результаты, заявленные во $\Phi\Gamma$ ОС третьего поколения).

Литература:

- 1. Габриелян О.С. Химия: учебник для студентов профессиональных учебных заведений –М.,2013.
- 2. Ерохин Ю.М. Химия: учеб. для студ. учреждений сред. проф. образования / Ю.М. Ерохин.-М.: Академия,2011. с. 170-360.

Образовательные результаты, заявленные во $\Phi \Gamma O C$ третьего поколения: Студент должен **иметь практический опыт:** осуществления химических реакций характерных для глюкозы, сахарозы и крахмала;

уметь: проводить качественные реакции на распознавание представителей углеводов; **знать:** строение молекул, физические и химические свойства, способы получения иприменение углеводов;

владеть: навыками экспериментальной работы в химической лаборатории.

Задачи лабораторной работы:

- 1. Повторить теоретический материал по теме лабораторной работы.
- 2.Ответить на вопросы для закрепления теоретического материала.
- 3.Выполнить опыты.
- 4.Оформить отчет.

Оснащение занятия (средства обучения):

- 1. Сборник методических указаний для студентов по выполнению практических занятий и лабораторных работ по учебной дисциплине «Химия».
- 2. Тетрадь для практических работ в клетку.
- 3.Ручка.
- 4. Простой карандаш.
- 5. Линейка.
- 6. Раствор глюкозы, крахмал, растворы $CuSO_4$ и NaOH, раствор йода (I_2), кусочек чèрного хлеба; штатив с пробирками, прибор для нагревания, держатель, спички.

Время выполнения 2 часа

Краткие теоретические и учебно-методические материалы по теме лабораторной работы

Углеводы - природные соединения. Являясь основным компонентом пищи, углеводы поставляют большую часть энергии, необходимой для жизнедеятельности. Некоторые углеводы входят в состав нуклеиновых кислот, осуществляющих биосинтез белкаи передачу наследственных признаков.

Углеводы широко распространены в природе и играют большую роль в биологических процессах живых организмов и человека. К ним относятся, например, виноградный сахар или глюкоза, свекловичный (тростниковый) сахар или сахароза, крахмал и клетчатка. Название "углеводы" возникло в связи с тем, что химический состав большинства соединений этого класса выражался общей формулой $C_n(H_2O)_m$. Дальнейшее исследование углеводов показало, что такое название является неточным. Во-первых, найдены углеводы, состав которых не отвечает этой формуле. Во-вторых, известны соединения (формальдегид CH_2O , уксусная кислота $C_2H_4O_2$), состав которых хотя и соответствует общей формуле $C_n(H_2O)_m$, но по свойствам они отличаются от углеводов.

Углеводы в зависимости от их строения можно подразделить на моносахариды, дисахариды и полисахариды.

В молекулах моносахаридов может содержаться от четырех до десяти атомов углерода. Названия всех групп моносахаридов, а также названия отдельных представителей оканчиваются на - *оза*. Поэтому в зависимости от числа атомов углерода в молекуле моносахариды подразделяют на тетр*озы*, пент*озы*, гекс*озы* и т. д. Наибольшее значениеимеют гексозы и пентозы.

Классификация углеводов

Простые	Сложные					
(не подвергаются гидролизу)	(подвергаются гидролизу)					
Моносахариды	Олигосахариды (Дисахариды)	Полисахариды				
Глюк оза $C_6H_{12}O_6$	Сахароза (дисахарид)	Крахмал $(C_6H_{10}O_5)_n$				
Фрукт оза С ₆ H ₁₂ O ₆	$C_{12}H_{22}O_{11}$	Целлюлоза $(C_6H_{10}O_5)_n$				
Риб оза С ₅ H ₁₀ O ₅						

Глюкоза $C_6H_{12}O_6$, химическое строение глюкозы можно выразить формулой: О CH_2OH - CHOH -

Вывод: глюкоза - многоатомный альдегидоспирт. Изомер глюкозы - фруктоза - кетоноспирт.

В водном растворе глюкозы находятся в динамическом равновесии три изомерные формы: α -форма, альдегидная и β -форма.

К дисахаридам относятся: сахароза (сахар), мальтоза, лактоза. Все они имеют молекулярную формулу $C_{12}H_{22}O_{11}$. Часто сведения о строении веществ можно получить путем расщепления - гидролиза молекул. Анализ продуктов гидролиза позволяет обнаружитьфруктозу и глюкозу. (Молекулы сахарозы состоят из остатков α -глюкозы и β -фруктозы).

Крахмал - полисахарид. Это белый аморфный порошок, не растворимый в воде. В горячей воде крахмальные зèрна набухают и образуют коллоидный раствор, называемый крахмальным клейстером. Крахмал - природное высокомолекулярное соединение, формула $(C_6H_{10}O_5)_n$ (n - от нескольких сотен до нескольких тысяч). О строении крахмала можно судить по продуктам его гидролиза. Гидролиз обычно проходит постепенно: в начале образуются продукты с меньшей молекулярной массой, чем крахмал, - декстрины, затем дисахарид - мальтоза и, наконец, глюкоза. Схема гидролиза:

$$(C_6H_{10}O_5)_n \rightarrow (C_6H_{10}O_5)_{n-x} \rightarrow C_{12}H_{22}O_{11} \rightarrow C_6H_{12}O_6.$$

Установлено, что в результате гидролиза крахмала образуется α -глюкоза. Отсюда **вывод:** макромолекулы крахмала состоят из остатков α - глюкозы. (При неполном гидролизе получается смесь декстринов и глюкозы, называемая патокой).

Вопросы для закрепления теоретического материала к практической работе:

- 1. Какие вещества относятся к углеводам, и почему им было дано такое название?
- 2. Какие химические свойства для глюкозы и глицерина являются общими, и чем эти вещества отличаются друг от друга? Напишите уравнения соответствующих реакций.
- 3. Составьте уравнения реакций при помощи, которых сахарозу можно превратить в этанол. Инструкция по выполнению практической работыЗадания для практической работы:

Задание № 1. Определите что общего в свойствах глицерина и глюкозой? Что доказывает опыт с глюкозой? Наличие какой функциональной группы доказывают опыты, к какому классу веществ относится глюкоза.

Задание № 2. Определите конечный продукт ферментативного гидролиза крахмала.

Инструкция по выполнению практической работы

1. Ознакомьтесь с правилами по технике безопасности при работе в химической лаборатории и распишитесь в журнале по ТБ.

Опыт 1. Доказательство, что глюкоза – многоатомный спирт

В пробирку налейте гидроксид натрия и добавьте в два раза меньше раствора сульфата меди. Образуется голубой осадок. Добавьте к нему раствор глюкозы, встряхните. Что наблюдаете? Составьте уравнения реакций:

- a) CuSO4 + 2NaOH =
- б) глюкоза + гидроксид меди (II) =

Опыт 2 Доказательство, что глюкоза – альдегид.

Повторите опыт 1, но содержимое нагрейте. Что наблюдаете? Составьте уравнения реакций:

- а) сульфат меди (II) + гидроксид натрия =
- б) глюкоза + гидроксид меди (II) = (при нагревании)

Вывод: Какие функциональные группы содержит глюкоза? Какими свойствами обладает глюкоза? Как распознать глюкозу?

Опыт 3 Качественная реакция на сахарозу.

Получите гидроксид меди (II), как в опыте 1, добавьте к нему раствор сахарозы, содержимое перемешайте и подогрейте. Что наблюдаете?

Вывод: К какому классу органических веществ относится сахароза. Какие функциональные группы содержит?

Опыт 4 Гидролиз сахарозы.

В пробирку с раствором сахарозы добавьте раствор серной кислоты и прокипятите содержимое. Составьте уравнения реакции гидролиза сахарозы. Чем является в реакциисерная кислота?

Опыт 5 Обнаружение глюкозы в продуктах гидролиза сахарозы.

В пробирку из опыта 4 добавьте гидроксид меди (II), получив его как в опыте 1. Что наблюдаете? Вывод: О чем говорит цветной осадок?

Опыт 6 Получение коллоидного раствора крахмала.

Возьмите две пробирки: в одну поместите крахмал с Н2О и постоянно взбалтывайте супсензию; в другую налейте воду и вскипятите. Затем содержимое пробирок 1 и 2 соедините, размешайте. Что наблюдаете?

Вывод: в какой воде растворяется крахмал? Как в быту называется коллоидный раствор?Опыт 7 Качественная реакция на крахмал.

Возьмите половину коллоидного р-ра крахмала из опыта 6 и добавьте каплю водногораствора йода. Что наблюдаете?

Опыт 8

Возьмите срез картофеля и белого хлеба и обнаружьте в нем крахмал.

Вывод: Как распознать крахмал в продуктах?

Опыт 9 Полный гидролиз крахмала.

Возьмите половину коллоидного p-pa из опыта 6, добавьте p-p серной кислоты и прокипятите. Запишите уравнение реакции (крахмал + вода). Обнаружьте в продуктах гидролиза глюкозу, т.е. в пробирку добавьте гидроксид меди (II) (получите его как в опыте 1), перемешайте, нагрейте. Вывод: О чем говорит цветной осадок? Для чего нужна серная кислота при гидролизе?Опыт 10

Хорошо разжуйте белый хлеб, смочите слюной, поместите в пробирку, добавьте гидроксидмеди (II) и нагрейте. Что наблюдаете? О чем говорит осадок? Какую роль выполняет слюна? Опыт 11 Экспериментальная задача

Дано: пробирки № 1, № 2, № 3 с растворами глюкозы, сахарозы, воды. Какой реактив надо добавить, чтобы при нагревании выявить, в какой пробирке что находится? Напишите наблюдения. Вывод: В пробирке № 1 находится... и т.д.

2. Выполните опыт № 1. Свойства глюкозы и сахарозы.

- а) В пробирку внесите 5 капель раствора глюкозы, каплю раствора соли меди (II) и при взбалтывании несколько капель раствора гидроксида натрия до образования светло синего раствора. Такой опыт проделывали с глицерином.
- б) Полученный раствор нагрейте. Что наблюдаете?
 - 3. Выполните опыт №2. Свойства крахмала.

При помощи шпателя поместите в пробирку крахмал и прилейте 2 мл воды. Содержимое взболтать. Далее вылейте небольшими порциями содержимое пробирки (при помешивании) в стакан с 5-6 мл горячей воды. Полученный крахмальный клейстер - коллоидный раствор - использовать для проведения последующих опытов. а) **Качественная реакция на крахмал**. К 5-6 каплям крахмального клейстера в пробирке прибавьте каплю спиртового раствора йода.

б) **Ферментативный гидролиз крахмала**. Под действием пищеварительного фермента амилазы происходит гидролиз крахмала. Хорошо разжеванный маленький кусочек черного хлеба пометите в пробирку. Прилейте к нему каплю раствора соли меди (II) и несколько

капель раствора NaOH до появления слабо-голубого окрашивания. Содержимое пробиркинагрейте.

Методика анализа результатов, полученных в ходе лабораторной работы

- 1. Используя инструкцию по выполнению лабораторной работы, проведите опыты, соблюдая правила техники безопасности при работе в кабинете химии.
- 2. Следующий опыт следует начинать только после полного разбора предыдущего опыта.

Порядок выполнения отчета по лабораторной работе

- 1. В тетради для практических занятий и лабораторных работ напишите номер, название и учебную цель работы.
- 2. Ответьте на вопросы для закрепления теоретического материала к лабораторной работе.
- 3. Выполните опыты № 1, согласно инструкции по выполнению лабораторной работы. Запишите наблюдения в таблицу. Составьте уравнение реакции глюкозы с гидроксидом меди (II).
- 4. Выполните опыты № 2, согласно инструкции по выполнению лабораторной работы. Запишите наблюдения в таблицу.
- 5. Запишите вывод о проделанной работе, отразите, на сколько успешно Вы справились с учебными задачами лабораторной работы и реализованы ли образовательные результаты, заявленные во ФГОС третьего поколения.

Контрольные вопросы

Задание 1. Охарактеризуйте строение и химические свойства целлюлозы. Составьте уравнения соответствующих реакций.

Задание 2. Напишите уравнения реакций окисления и восстановления глюкозы. Назовите полученные вещества. Наличие какой функциональной группы в молекуле глюкозы дает возможность провести эти реакции?

Задание 3.Напишите уравнения химических реакций, при помощи которых можно осуществить следующие превращения:

 $CO_2 \rightarrow C_6H_{12}O_6 \rightarrow C_2H_5OH \rightarrow CH_3 COH$

Задание 4. Задача. Сколько л водорода (н.у.) можно получить из 18 г глюкозы в процессе еè маслянокислого брожения?

Вариант 2.

Задание 1. Охарактеризуйте строение и химические свойства крахмала. Дайте характеристику полисахаридов, из которых состоит крахмал и запишите качественную реакцию.

Задание 2. Какими химическими свойствами можно доказать, что глюкоза – альдегидоспирт?Ответ подтвердите уравнениями химических реакций.

Задание 3.Напишите уравнения химических реакций, при помощи которых можно осуществить следующие превращения:

 $(C_6H_{10}O_5)n \rightarrow C_6H_{12}O_6 \rightarrow CO_2 \rightarrow C_6H_{12}O_6$

Задание 4. Задача. Сколько л углекислого газа(н.у.) можно получить из 18 г глюкозы впроцессе еè спиртового брожения?

Контрольная работа № 3 по теме «Углеводы»

Вариант 3.

Задание 1. Охарактеризуйте строение и химические свойства глюкозы. Составьте уравнения соответствующих реакций.

Задание 2. Напишите уравнение реакции гидролиза сахарозы. Назовите полученные вещества.

Задание 3.Напишите уравнения химических реакций, при помощи которых можно осуществить следующие превращения:

 $CH_4 \rightarrow HCOH \rightarrow C_6H_{12}O_6 \rightarrow C_3H_7COOH$

Задание 4. Задача. Сколько г молочной кислоты можно получить из 18 г глюкозы в процессе еè молочнокислого брожения?

Вариант 4.

Задание 1. Охарактеризуйте строение и химические свойства сахарозы. Дайте характеристику дисахаридов, из которых состоит сахароза и запишите качественную реакцию на глюкозу. Задание 2. Запишите реакции брожения глюкозы.

Задание 3.Напишите уравнения химических реакций, при помощи которых можно осуществить следующие превращения:

 $(C_6H_{10}O_5)n \rightarrow C_6H_{12}O_6 \rightarrow C_2H_5OH \rightarrow CH_3COO-C_2H_5$

Задание 4. Задача. Сколько л водорода(н.у.) вступает в реакцию с 18 г глюкозы в процессе гидрирования?

Образец отчета по практической работе

«Взаимодействие глюкозы и сахарозы с гидроксидом меди (II). Качественные реакции накрахмал». **Учебная цель:** практически познакомиться с важнейшими химическими свойствами глюкозы, сахарозы и крахмала.

	на вопросы для закрепления теоретического материала к практической работе
2	··
3	

Название опыта	Рисунок того что делаете	Наблюдения и объяснения	ИХ	Уравнения реакций
Реакция серебряного зеркала глюкозы	R			
Взаимодействие глюкозы с гидроксидом меди (II)				
Качественная реакция на крахмал	R			
Взаимодействие сахарозы с гидроксидом меди (II)	E			

Вывод: Выполнив задания практической работы я (см. учебные задачи и образовательные результаты, заявленные во $\Phi \Gamma O C$ третьего поколения).

Литература:

- 1. Габриелян О.С. Химия: учебник для студентов профессиональных учебных заведений –М.,2013.
- 2. Ерохин Ю.М. Химия: учеб. для студ. учреждений сред. проф. образования / Ю.М. Ерохин.-М.: Академия,2011. с. 170-360.

Практическое занятие № 6. Биологически активные соединения.

Учебная цель: экспериментальным путем изучить качественные реакции на некоторые витамины

Учебные задачи:

- 1. Убедиться в биологической значимости витаминов в жизнедеятельности человека.
- 2. Рассмотреть классификацию витаминов.
- 3. Уметь определять наличие витаминов A, C, Д с помощью простейших химических приемов..

Образовательные результаты, заявленные во ФГОС третьего поколения:

Студент должен

иметь практический опыт: определения наличия основных витаминов химическим способом

знать: определения понятий «витамины», «авитаминоз», «гиповитаминоз», «гипервитаминоз».

уметь: применять знания о роли и функциях витаминов в процессах жизнедеятельностичеловека на практике

владеть: навыками и правилами обращения с витаминными препаратами.

Оснащение занятия:

- 1. Оборудование и реактивы: штатив с пробирками, спиртовка, спички, химический стакан, пипетки, вытяжка из шиповника (5г растертого шиповника смешать с 2 мл соляной кислоты, долить дистиллированной воды до 50 мл. Профильтровать. Фильтрат является вытяжкой шиповника), раствор йода в йодиде калия, яблочный сок, апельсиновый сок, крахмальный клейстер.
- 2. Тетрадь для практических работ
- 3. Карточки-задания, инструкционные карты, образцы соков
- 4. Чертежные принадлежности: линейка, простой карандаш.

Время выполнения 2 часа

Краткие теоретические материалы по теме работы

Витамины – низкомолекулярные органические соединения различной химической природы, катализаторы, биорегуляторы процессов, протекающих в живом организме. Для нормальной жизнедеятельности человека витамины необходимы в небольших количествах, но так как в организме они не синтезируются в достаточном количестве, то должны поступать с пищей в качестве ее необходимого компонента. Отсутствие или недостаток в организме витаминов вызывает гиповитаминозы (болезни в результатедлительного недостатка) и авитаминозы (болезни в результате отсутствия витаминов). При приеме витаминов в количествах, значительно превышающих физиологические нормы, могут развиваться

гипервитаминозы. Вредны все крайности: как недостаток, так и избыток витаминов. Так как при избыточном потреблении витаминов развивается отравление (интоксикация). Она очень часто наблюдается у ребят, которые занимаются столь модным сейчас бодибилдингом. Важнейшими признаком классификации является способность витаминов растворяться в воде или жирах. Поэтому признаку различают два класса витаминов:

- 1. Водорастворимые. К ним относятся витамины С, РР, группы В и другие.
- 2. Жирорастворимые. К ним относятся витамины групп A, D, E и K.

Витамины

Водорастворимые

жирорастворимые

аскорбиновая

 ${\bf B}_1$ тиамин

ретинол

кальциферол

кислота

 \mathbf{B}_2 рибофлавин

В₃ пиридоксин

 \mathbf{B}_{12} цианкобаламин

Классификация и номенклатура витаминов

Витамин			<i>*</i>				
Обозначение	Название	Основные источники	Функции				
		Жирорастворимые вип	памины				
A	Ретинол	Рыбий жир, печень, молоко, шпинат, кресс-салат, морковь	Необходим для нормального роста и формирования эпителиальных тканей				
Е	Токоферол	Зародыши пшеницы, ржаная мука, печень, зеленые овощи	Участвует в формировании и регуляции деятельности кровеносной системы, в работе печени				
D	Кальциферол	_ -	Регулирует всасывание из пищи кальция, необходим для образования костей, зубов, способствуетусвоению фосфора				
		Водорастворимые вит	амины				
B ₁	Тиамин	Зародыши пшеницы, субпродукты, дрожжи	Участвует в тканевом дыхании				
B ₂	Рибофлавин	Мясные, молочные продукты, яичный желток	'''				
С	Аскорбиновая кислота	Картофель, цитрусовые, томаты, зеленые овощи	Участвует в метаболизме соединительной ткани				

Суточная потребность человека в витаминах и их основные функции

Витамин	Суточная потребность, мг	Функции					
Аскорбиновая кислота (C)		Участвует в окислительно-восстановительных реакциях, повышает сопротивляемость организма инфекционным воздействиям					
Тиамин (В1)	1,4-2,4 (в среднем 1,7)	Необходим для нормальной жизнедеятельности центральной и периферической нервной системы. Регулятор жирового и углеводного обмена					
Рибофлавин (витамин В ₂)	1,5-3,0 (в среднем 2,0)	Участвует в окислительно-восстановительных реакциях					

Ниацин (РР)	15,0-25,0 (в среднем 19,0)	Участвует в окислительно-восстановительных реакциях в клетках. Недостаток вызывает пеллагру					
Ретинол (А)	0,5-2,5 (в среднем 1,0)	Участвует в деятельности мембран клеток. Необходим для роста и развития организма, для функционирования слизистых оболочек. Участвует в процессе фоторецепции (в восприятии света)					
Кальциферол (D)	$(2,5-10) \cdot 10^{-3}$	Регулирует содержание кальция и фосфора в крови, минерализацию костей, зубов					
Токоферол (Е)	8–15 (в среднем 10)	Предотвращает окисление липидов, влияет на синтез ферментов. Активный антиокислитель					

Вопросы для закрепления теоретического материала к лабораторной работе:

- 1. Что такое авитаминоз, гиповитаминоз, гипервитаминоз?
- 2. Какие витаминные препараты Вы знаете и как следует их применять?
- 3. Как сохранить витамины в выращенной на дачном участке плодоовощной продукции при еè длительном хранении?

Инструкция по выполнению лабораторной работы

Опыт 1. Йодная проба на витамин С из вытяжки из шиповника.

Берем две сухие чистые пробирки.

В них наливаем по 10 капель дистиллированной воды с помощью пипетки.

Добавляем по 1-2 капли раствора йода.

В одну пробирку добавляем 10 капель вытяжки из шиповника.

Наблюдаем следующее: раствор йода в йодиде калия при добавлении к нему вытяжки из шиповника обесцвечивается за счет восстановления аскорбиновой кислотой молекулярного йода и образования HI.

В другую пробирку добавляем такой же объем воды.

Изменений не наблюдается.

Делаем вывод: в вытяжке шиповника имеется витамин С

Опыт 2. Определение витамина С в яблочном соке.

Берем сухой чистый стакан. Наливаем в

него 2 мл яблочного сока.

Разбавляем сок 10 мл дистиллированной воды.

Добавляем немного крахмального клейстера.

Далее по каплям добавляем спиртовой раствор йода.

Появляется устойчивое синее окрашивание, не исчезающее 10-15 секунд.

Молекулы аскорбиновой кислоты легко окисляются йодом.

Как только йод окислил всю аскорбиновую кислоту, следующая же капля прореагирует с крахмалом, окислив раствор в синий цвет.

Делаем вывод: в яблочном соке содержится витамин С.

Опыт 3. Обнаружение витамина С в апельсиновом соке.

Берем сухую чистую пробирку. Наливаем в

нее 2 мл апельсинового сока.

Разбавляем сок 10 мл дистиллированной воды.

Добавляем немного крахмального клейстера.

К образовавшемуся раствору приливаем по каплям с помощью пипетки спиртовой растворйода.

Как только йод окислит всю аскорбиновую кислоту, следующая его капля окрасит раствор в синий цвет.

Делаем вывод: в апельсиновом соке содержится витамин С.

Опыт 4. Определение витамина А в подсолнечном масле.

В пробирку налейте 1 мл подсолнечного масла и добавьте 2-3 капли 1 %-ного раствораFeClз. При наличии витамина А появляется ярко-зеленое окрашивание.

Опыт 5. Определение витамина D в рыбьем жире или курином

желтке. В пробирку с 1 мл. рыбьего жира прилейте 1 мл раствора брома. При наличии витамина Dпоявляется зелено – голубое окрашивание.

Контрольные вопросы

- 1. Какую роль в живом организме играют витамины?
- 2. Почему витамины называют биологически активными веществами?
- 3. Перечислите источники поступления витаминов в организм человека.
- 4. Могут ли витаминные лекарственные препараты заменить естественные плодоовощные?
- 5. Запишите правила, которые надо соблюдать при приготовлении блюд, чтобы в них неразрушались витамины.
- 6. Перечислите известные Вам витаминные препараты и правила их применения.
- 7. Кто из наших соотечественников является основоположником учения о витаминах? Приведите доказательную базу.

Отчет по практической работе

- 1. В тетради для практических работ напишите номер, название иучебную цель работы.
- 2. Ответьте на контрольные вопросы для закрепления теоретического материала к практическому занятию.
- 3. По результатам практической работы заполните таблицу:

Номер опыта	Что делали	Что наблюдали	Вывод
1			
2			
3			
4			
5			

4.Запишите вывод о проделанной работе, отразите, на сколько успешно Вы справились с учебными задачами практического занятия и реализованы ли образовательные результаты, заявленные во $\Phi\Gamma$ OC третьего поколения.

Контролируемые компетенции: ОК 01 ОК 02 ОК 04 ОК 07, ПК 2.1.

Критерии оценки:

Критерии оценки выполнения практических и лабораторных работ по химии. Оценка «зачтено»:

- работа выполнена правильно, сделаны правильные наблюдения и выводы, написаны уравнения реакций, могут быть допущены несущественные ошибки в работе с веществами и оборудованием, допущены несущественные ошибки в написании уравнений реакций;
- эксперимент осуществлен по плану с учетом техники безопасности и правил работы с веществами и оборудованием;
- научно грамотно, логично описаны наблюдения и сформулированы выводы из опыта. В представленном отчете правильно и аккуратно выполнены все записи, таблицы, рисунки, чертежи,

графики, вычисления и сделаны выводы; допускается ошибка в ходе эксперимента в объяснении, в оформлении работы;

- на защите практической / лабораторной работы обучающийся излагает теоретический материал в определенной логической последовательности, допускается две-три несущественные ошибки, исправленные по требованию учителя.

Оценка «не зачтено»:

- допущены две (и более) существенные ошибки в ходе: эксперимента, в объяснении, в оформлении работы, в соблюдении правил техники без опасности при работе с веществами и оборудованием, которые обучающийся не может исправить даже по требованию учителя;
 - работа не выполнена, у обучающегося отсутствует экспериментальные умения;
- на защите практической / лабораторной работы обнаружено непонимание обучающимся основного содержания учебного материала или допущены существенные ошибки, которые обучающийся не может исправить при наводящих вопросах преподавателя, отсутствие ответа.

Защита практической и лабораторной работы:

Под защитой практической / лабораторной работы подразумевается:

- 1. Представление преподавателю своего лабораторного журнала (тетради) с полностью оформленной работой и проверка ее преподавателем.
- 2. Собеседование с преподавателем по теории и методике эксперимента, а также ответы на контрольные вопросы в конце каждой лабораторной работы. Если среди контрольных заданий есть задачи, то они должны быть выполнены в письменной форме в тетради.

Сдать работу преподавателю (т.е. защитить ее на оценку) можно на том же занятии, на котором она выполнялась. Если оформление работы требует дополнительного времени (например, в ней есть большая графическая часть), то защита выполненной практической / лабораторной работы проводится на следующем занятии.

Критерии оценки решений расчетных задач.

Оценка «5»: в логическом рассуждении и решении нет ошибок, задача решена рациональным способом:

Оценка «4»: в логическом рассуждении и решения нет существенных ошибок, но задача решена нерациональным способом, или допущено не более двух несущественных ошибок.

Оценка «3»: в логическом рассуждении нет существенных ошибок, но допущена существенная ошибка в математических расчетах.

Оценка «2»: имеется существенные ошибки в логическом рассуждении и в решении; - отсутствие ответа на задание.

При подготовке лабораторной работы к защите следует повторить соответствующие разделы по конспекту лекций и учебнику.

Перечень вопросов (задач) для промежуточной аттестации (экзамен/зачет)

Раздел 1. Теоретические основы химии

- 1. Периодический закон и периодическая система элементов Д.И. Менделеева в свете учения о строении атома.
- 2. Современные представления о строении атомных орбиталей химических элементов. Электронные формулы и графические схемы строения электронных слоев атомов.
 - 3. Состав атомных ядер. Изотопы. Понятие химического элемента.
- 4.Изменение состава, строения и свойств простых веществ-неметаллов, образованных элементами: а) одного периода; б) одной группы периодической системы Д.И. Менделеева.
 - 5. Что такое период, группа, подгруппа в периодической системе? Дайте определение.
 - 6. Какие подгруппы называются главными и какие побочными?
 - 7. Как изменяются металлические свойства элементов в группе и в периоде?
- 8. Сформулируйте принципы, в соответствии с которыми происходит заполнение электронных орбиталей в атоме.
 - 9. Сколько электронов может максимально находиться на одной электронной орбитали?
- 10. Сколько электронов максимально может находиться на s-подуровне? p-подуровне? d-подуровне?

Раздел 2. Химические реакции

- 1. Какие реакции называются окислительно-восстановительными?
- 2. Что такое степень окисления? Что такое валентность?
- 3. Как определить с.о. для элементов, входящих в состав молекул или сложных ионов? Приведите примеры.
 - 4. Чему равна степень окисления в простых веществах?
 - 5. Как найти максимальную и минимальную степень окисления?
 - 6. Какие реакции относятся к окислительно-восстановительным реакциям?
 - 7. Дайте понятие процессов окисления и восстановления. Приведите примеры.
 - 8. Что называется окислителем?
 - 9. Что называется восстановителем?
 - 10. Определить степень окисления каждого атома в следующих веществах:

сернистая кислота, ортофосфорная кислота, хлорная кислота, перманганат бария, пероксид водорода, бихромат аммония, аммиак, гидрид магния, оксид марганца (VII)

- 11. Определить максимально и минимально возможную степень окисления у элементов: Фосфора, серы, углерода, брома, марганца
 - 12. Электролитическая диссоциация. Степень диссоциации. Сильные электролиты.
 - 13. Реакции ионного обмена в водных растворах, условия их необратимости.
 - 14. Гидролиз солей.

Раздел 3. Строение и свойства неорганических веществ

- 1. Какую химическую связь называют ковалентной?
- 2. Дайте определение полярной и неполярной ковалентной связи.
- 3. Что такое электроотрицательность?
- 4. Охарактеризуйте механизмы образования ковалентной связи.
- 5. В чем различие ковалентной полярной и ковалентной неполярной связи?
- 6. Дайте определение терминам: «ион», «катион», «анион». Каков механизм образования ионной связи? Приведите примеры веществ с ионной связью.
 - 7. Каков механизм образования металлической связи?
- 8. Какая связь называется водородной? Каков механизм ее образования? Приведите примеры веществ с водородной связью.

- 9. Общая характеристика металлов главных подгрупп периодической системы химических элементов Д.И. Менделеева, строение их атомов. Металлическая связь.
 - 10. Окислительно-восстановительные свойства и степени окисления химических элементов.
 - 11 Что такое кислоты? Определение, классификация.
 - 12. Что такое соли? Определение, классификация.
 - 13. Что такое основания? Определение, классификация.
 - 14. Что такое оксиды? Определение, классификация.
 - 15. Перечислите свойства кислот, назовите главный действующий ион кислот.
 - 16. Перечислите свойства щелочей, назовите их главный действующий ион.
 - 17. Перечислите свойства солей, вспомните способы их получения.
 - 18. Как амфотерные гидроксиды взаимодействуют с растворами щелочей?
 - 19. В чём различие в строении внешнего энергетического уровня у металлов и неметаллов?
 - 20. Сколько наружных электронов имеют атомы металлов главных и побочных подгрупп?
 - 21. Перечислите известные вам химические свойства металлов.
 - 22. Как можно получить металлы из их соединений?
- 23. Какие свойства окислителей или восстановителей проявляют металлы в химических реакциях?
 - 24. Расскажите об электрохимическом ряде напряжений металлов.

Раздел 4. Строение и свойства органических соединений

- 1. Основные положения теории химического строения А.М. Бутлерова. Химическое строение как порядок соединения и взаимного влияния атомов в молекулах.
 - 2. Изомерия органических соединений, ее виды.
- 3. Предельные углеводороды, общая формула состава, электронное и пространственное строение.
- 4. Непредельные углеводороды ряда этилена, общая формула состава, электронное и пространственное строение, sp2-гибридизация электронных облаков атома углерода. Изомерия.
- 5. Ацетилен представитель углеводородов с тройной связью в молекуле, sp-гибридизация электронных облаков атома углерода.
- 6. Ароматические углеводороды. Структурная формула бензола (по Кекуле). Электронное строение молекулы, полуторная связь.
- 7. Гомологический ряд предельных одноатомных спиртов. Этиленгликоль и глицерин как представители многоатомных спиртов. Фенол, строение, физические и химические свойства.
- 8. Альдегиды, гомологический ряд, строение, функциональная группа. Химические свойства альдегидов. Получение, применение муравьиного и уксусного альдегидов.
 - 9. Гомологический ряд предельных одноосновных кислот.
- 10. Глюкоза важнейший представитель моносахаридов, строение, физические и химические свойства, применение.
- 11. Аминокислоты, строение, изомерия, физические свойства, особенности химических свойств. Биологическое значение альфа"аминокислот.

Раздел 5. Кинетические и термохимические закономерности протекания химических реакций

- 1. Какое вещество называют катализатором? Какие явления называют катализом?
- 2. Как в вашей будущей профессии используется теплота, выделяющаяся при протекании экзотермических реакций?
- 3. Охарактеризуйте понятие «скорость химической реакции». В каких единицах измеряется и от каких факторов зависит скорость химической реакции?
- 4. Какие реакции называют необратимыми? Приведите примеры таких реакций и напишите их уравнения?
- 5. Какие реакции называют обратимыми? В чем заключается химическое равновесие? Как его сместить?

6. Сформулируйте принцип Ле-Шателье. Рассмотрите влияние каждого фактора на смещение химического равновесие?

Раздел 6. Качественные реакции обнаружения неорганических и органических веществ

- 1. Взаимосвязь между классами органических соединений.
- 2. Взаимосвязь между классами неорганических соединений.
- 3. Что такое качественная реакция?
- 4. Какие качественные реакции на важнейшие классы органических соединений вы знаете? Приведите примеры.
- 5. Какие качественные реакции можно использовать для обнаружения анионов кислот? Приведите примеры.

Раздел 7. Химия в быту и производственной деятельности человека

- 1. Состав, строение и свойства полимеров.
- 2. Основные методы синтеза высокомолекулярных полимеризации и поликонденсации. Пластмассы и каучуки.
- 3. Синтетические волокна: полиэфирные (лавсан) и полиамидные (капрон). Роль химии в создании новых материалов.
- 4. Практическое использование полимеров и возникновение экологической проблемы вторичной переработки полимерных продуктов.
- 5. Будущее полимерных материалов. Необходимость создания полимеров, разлагающихся в естественных условиях и не загрязняющих окружающую среду.
- 6. Состав, названия и свойства представителей важнейших классов органических соединений, их функциональные группы; практическое значение изучаемых органических веществ.
- 7. Генетическая связь между важнейшими классами органических соединений. Зависимость между составом, строением и свойствами органических веществ.
 - 8. Химия в жизни общества.
 - 9. Понятие о витаминах. Группа водорастворимых витаминов. Биологическая роль.
 - 10. Понятие о витаминах. Группа жирорастворимых витаминов. Биологическая роль.
 - 11. Лекарства. Антибиотики. Сульфаниламидные препараты.
 - 12. Гормоны. Ферменты

Типовой вариант для дифференцированного зачета

Вариант 1

Инструкция для обучающихся

Внимательно прочитайте задание.

Время выполнения задания – _90 минут

Часть А

Эта часть состоит из 15 заданий. (А 1 - A 15). К каждому заданию даны 3 варианта ответов, из которых только один верный. Каждое правильно выполненное задание части A оценивается в 1 балл.

A. Электронная формула $1s^2 2s^2 2p^6 3s^1 3p^0$ соответствуют атому:

- 1) Li
- 2) Na
- 3)K

А2. В результате соединения двух атомов кислорода О2 образуется связь:

- 1) Ионная
- 2)Водородная
- 3) Ковалентная неполярная

А3. Степень окисления серы в соединении FeSO₃ равна:

- 1) + 2
- 2)+3
- 3)+4

А4. Кислотным и основным оксидом являются:

- 1) SO₂иMqO
- 2) CO₂и H₂O
- 3)ZnOи Al₂O₃

А5. Кислотные свойства наиболее ярко выражены у вещества, формула которого:

- $1)NH_3$
- 2) H₂S
- 3) HCL

Аб. Оксиды серы SO₂ взаимодействует с:

- $1)H_2$
- $2)O_{2}$
- 3)H₂O

A7. Гидроксид цинкаZn(OH)2 может реагировать:

- 1) CaSO₄
- 2) HCL
- 3) H₂O

А8. С каким из веществ реагирует раствор CuSO4:

- 1)HCL
- 2) NaOH
- 3) HNO₃

А9. Гомологами являются:

- 1) пентан и пентадиен
- 2) этан и пропан
- 3) этанол и этаналь

А10. Гидроксильная группа (ОН) имеется в молекулах:

- 1) спиртов
- 2)эфиров
- 3)жиров

А11. К какому из приведенных типов реакций можно отнести реакцию ионного обмена?

- 1) Разложения
- 2) Замещение
- 3) Нейтрализации

А12. Электролитом являются каждое вещество в ряду:

- 1) C₂H₆, H₂CO₃
- 2) Ba(OH)₂, CH₃OCH₃
- 3) KOH, H₃PO₄

A13. Уравнение реакции $Zn(OH)_2 + H_2SO_4 = ZnSO_4 + 2 H_2O$ соответствует краткое ионное уравнение:

- 1) $H^++OH^-=H_2O$
- 2) $H_2SO_4+Zn^{2+} = ZnSO_4+H_2O$
- 3) $Zn(OH)_2 + 2H^+ = Zn^{2+} + 2H_2O$

А14. Какое из веществ оказывает на организм человека наркотическое действие?

- 1) C₂H₅OH
- 2)H₂CO₃
- 3)CH₄

А15. При действии спиртового раствора щелочи на 2-хлор-бутан образуется:

- 1) Бутановая кислота
- 2) Циклобутан
- 3)Бутен-2

Часть В.

При выполнении заданий части В, необходимо выполнить указанные задания, дать развёрнутый ответ, написать все необходимые уравнения реакций, указать названия продуктов реакции и исходных веществ.

Каждое правильно выполненное задание части В оценивается в 2 балла.

В1. Осуществите цепочку превращений. Напишите все необходимые реакции.

 $CaCO_3$ —> $CaCl_2$ —> $Ca(OH)_2$

В2. Осуществите цепочку превращений. Напишите все необходимые реакции.

 $C_2H_5Cl \longrightarrow C_2H_5OH \longrightarrow C_2H_5ONa$

ВЗ. Что такое водный гидролиз соли? Напишите уравнения реакции гидролиза соли $FeCl_2$ в молекулярной и ионной формах. Какова среда водного раствора этой соли?

Часть С.

При выполнении заданий части С, необходимо в уравнениях окислительно-восстановительной реакций подобрать коэффициенты методом электронного баланса, указать окислитель и восстановитель.

Каждое правильно выполненное задание части С оценивается в 10 баллов.

С1. Расставьте коэффициенты в уравнении окислительно-восстановительной реакции методом электронного баланса. Укажите окислитель и восстановитель.

 $Cu+HNO_3=Cu(NO_3)_2+NO+H_2O$

С2. Расставьте коэффициенты в уравнении окислительно-восстановительной реакции методом электронного баланса. Укажите окислитель и восстановитель.

 $P + O_2 = P_2O_5$

С3. Найдите объем кислорода, необходимый для сжигания 8л пропана (н.у).

Эталоны ответов

Ключ к ответам для варианта №1

Часть А

No	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	A11	A12	A13	A14	A15
	2	3	3	1	3	3	2	2	2	1	3	3	3	1	3

Часть В

B 1.

- 1) $CaCO_3 + HCl = CaCl_2 + H_2O + CO_2$
- 2) $CaCl_2+2NaOH=Ca(OH)_2+2NaCl$

B 2

- . 1) $C_2H_5Cl + HOH = C_2H_5OH$
- 2) $C_2H_5OH + Na = C_2H_5ONa + H_2$

B 3.

1-ая ступень $FeCl_2 + HOH = >Fe(OH)Cl + HCl$

 $Fe_2^+ + 2Cl^- + H^+ + OH^- => Fe(OH)^+ + 2Cl^- + H^+$

2-ая ступень $Fe(OH)Cl + HOH => Fe(OH)_2 + HCl$

 $Fe(OH)^{+} + Cl^{-} + H^{+} + OH^{-} = > Fe(OH)_{2} + H^{+} + Cl^{-}$

Часть С

C1 3Cu+8HNO₃=3Cu(NO₃)₂+2NO+4H₂O

 $Cu^0 - 2$ е = Cu^{+2} восстановитель, окисление

 $N^{+5} + 3e = N^{+2}$ окислитель, восстановление

C2. $4 P + 5O_2 = 2P_2O_5$

 $P^0 - 5 e = P^{+5}$ окисление, восстановитель

 $O^0 + 2 e = O^{-2}$ восстановление, окислитель

C3.

Дано:

Решение

$$V(C_3H_8)=8л$$

$$C_3H_8+5O_2\rightarrow 3CO_2+4H_2O$$

Найти

1. Вычисляем молярный обьем C_3H_8 и O_2 :

 $V(O_2)$

$$Vm(C_3H_8)=22,4$$
 л/моль;

$$Vm(O_2)=22,4*5=112$$
 л/моль;

2. Определяем объем О2:

$$V(C_3H_8)/Vm(C_3H_8)=V(O_2)/Vm(O_2)$$

$$8/22,4=x/112$$

$$X=8*112/22,4=40 \pi$$

Ответ: $V(O_2)=40$ л

Критерии оценки:

- **«5»** от 86% до 100% правильных ответов.
- «4» от 76% до 85% правильных ответов.
- \ll 3» от 61% до 75% правильных ответов.
- «2» менее 61% правильных ответов.