#### МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РТ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ «АПАСТОВСКИЙ АГРАРНЫЙ КОЛЛЕДЖ»

Приложение:

ОПОП ПО профессии 13.01.10 Электромонтер по ремонту и обслуживанию электрооборудования (по отраслям)

Утвержден:

приказ №22/1 от « 31 » 08 /И.А. Нигматзянов/

Комплект контрольно-оценочных средств

Электротехника с основами электрооборудования

по профессии 13.01.10 Электромонтер по ремонту и обслуживанию электрооборудования (по отраслям)

укрупненная группа профессий 13.00.00 Электро- и теплоэнергетика

Квалификация: Электромонтер по ремонту и обслуживанию электрооборудования Форма обучения: очная Срок обучения – 1 год 10 месяцев на базе основного общего образования профиль получаемого профессионального образования – технический

#### 1. Общие положения

Комплекс оценочных средств (КОС) предназначен для контроля и оценки образовательных достижений обучающихся, освоивших программу учебной дисциплины *О*<u>П.02</u>. Электротехника с основами электроники

КОС включает контрольные материалы для проведения текущего контроля и промежуточной аттестации в форме зачёта.

КОС разработаны на основании положений:

ФГОС СПО по ППКРС <u>13.01.10 «Электромонтер по ремонту и</u> <u>обслуживанию электрооборудования (по отраслям)»</u> утвержденного приказом Министерства образования и науки Российской Федерации от 02 августа 2013 г. N 802

основной профессиональной образовательной программы среднего профессионального образования по программе подготовки квалифицированных рабочих, служащих по профессии 13.01.10 Электромонтер по ремонту и обслуживанию электрооборудования (по отраслям) программы учебной дисциплины

ОП. 02. «Электротехника с основами электроники

# 2. Перечень основных показателей оценки результатов, элементов практического опыта, знаний и умений, подлежащих текущему контролю и промежуточной аттестации

| промежуточной аттестации                                          |                                                                |                                                                                                                                |                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Код и наименование основных показателей оценки результатов (ОПОР) | Код<br>и<br>наименование<br>элемента<br>практического<br>опыта | Код и наименование<br>элемента умений                                                                                          | Код и наименование<br>элемента знаний                                                                                                                                                                                                                                          |
| 1                                                                 | 2                                                              | 3                                                                                                                              | 4                                                                                                                                                                                                                                                                              |
| ОК 1 – ОК 7                                                       |                                                                |                                                                                                                                | 38. способы экономии электроэнергии 311. правила техники безопасности при работе с электрическими приборами                                                                                                                                                                    |
| ПК 1.1 - ПК 1.4.                                                  |                                                                | У5. снимать показания работы и пользоваться электрооборудование м с соблюдением норм техники безопасности и правилэксплуатации | 31. основные понятия о постоянном и переменном электрическом токе, последовательное и параллельное соединение проводников и источников тока, единицы измерения силы тока, напряжения, мощности электрического тока, сопротивления проводников, электрических и магнитных полей |
|                                                                   |                                                                | Уб. читать принципиальные, электрические и монтажные схемы                                                                     | 32. сущность и методы измерений электрических величин, конструктивные и технические                                                                                                                                                                                            |

|                | У7. проводить сращивание, спайку и изоляцию проводов и контролировать качество выполняемых работ                                                           | характеристики измерительных приборов  34. условные обозначения электротехнических приборов и электрических машин                                                     |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                |                                                                                                                                                            | 35. основные элементы электрических сетей 39. правила сращивания, спайки и изоляции проводов                                                                          |
|                | У2. производить                                                                                                                                            | 310. виды и свойства электротехнических материалов  34. условные                                                                                                      |
| ПК 2.1 ПК 2.3. | контроль параметров работы электрооборудования                                                                                                             | обозначения электротехнических приборов и электрических машин                                                                                                         |
|                | У3. пускать и останавливать электродвигатели, установленные на эксплуатируемом оборудовании                                                                | 36. принципы действия, устройство, основные характеристики электроизмерительных приборов, электрических машин, аппаратуры управления и защиты, схемы электроснабжения |
|                | У4. рассчитывать параметры, составлять и собирать схемы включения приборов при измерении различных электрических величин, электрических машин и механизмов | 37. двигатели постоянного и переменного тока, их устройство, принципы действия, правила пуска, остановки                                                              |

|                | У1. контролировать    | 33. типы и правила   |
|----------------|-----------------------|----------------------|
|                | выполнение            | графического         |
| ПК 3.1 ПК 3.3. | заземления, зануления | изображения и        |
|                | ,                     | составления          |
|                |                       | электрических схем   |
|                | У2. производить       | 34. условные         |
|                | контроль параметров   | обозначения          |
|                | работы                | электротехнических   |
|                | электрооборудования   | приборов и           |
|                |                       | электрических машин  |
|                | У7. Проводить         | 38. способы экономии |
|                | сращивание, спайку и  | электроэнергии       |
|                | изоляцию проводов и   |                      |
|                | контролировать        |                      |
|                | качество              |                      |
|                | выполняемых работ     |                      |
|                |                       | 311. правила техники |
|                |                       | безопасности при     |
|                |                       | работе с             |
|                |                       | электрическими       |
|                |                       | приборами            |

#### 3. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ОСНОВНОЙ ПРОФЕССИОНАЛЬНОЙ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

#### Обшие компетенции:

- ОК 1. Понимать сущность и социальную значимость своей будущей профессии, проявлять к ней устойчивый интерес.
- OК 2. Организовывать собственную деятельность, исходя из цели и способов ее достижения, определенных руководителем.
- ОК 3. Анализировать рабочую ситуацию, осуществлять текущий и итоговый контроль, оценку и коррекцию собственной деятельности, нести ответственность за результаты своей работы.
- OК 4. Осуществлять поиск информации, необходимой для эффективного выполнения профессиональных задач.
- OК 5. Использовать информационно-коммуникационные технологии в профессиональной деятельности.
- OК 6. Работать в команде, эффективно общаться с коллегами, руководством, клиентами.
- ОК 7. Исполнять воинскую обязанность, в том числе с применением полученных профессиональных знаний (для юношей).

#### Профессиональные компетенции:

- ПК 1.1. Выполнять слесарную обработку, пригонку и пайку деталей и узлов различной сложности в процессе сборки.
  - ПК 1.2. Изготовлять приспособления для сборки и ремонта.
- ПК 1.3. Выявлять и устранять дефекты во время эксплуатации оборудования и при проверке его в процессе ремонта.
- ПК 1.4. Составлять дефектные ведомости на ремонт электрооборудования.
- ПК 2.1. Принимать в эксплуатацию отремонтированное электрооборудование и включать его в работу.
- ПК 2.2. Производить испытания и пробный пуск машин под наблюдением инженерно-технического персонала.
- ПК 2.3. Настраивать и регулировать контрольно-измерительные приборы и инструменты
- ПК 3.1. Проводить плановые и внеочередные осмотры электрооборудования.
- ПК 3.2. Производить техническое обслуживание электрооборудования согласно технологическим картам.
- ПК 3.3. Выполнять замену электрооборудования, не подлежащего ремонту, в случае обнаружения его неисправностей.

## 4. Кодификатор контрольных заданий

| Функциональный признак     |                                    | Код          |
|----------------------------|------------------------------------|--------------|
| оценочного средства (тип   | Метод/форма контроля               | контрольного |
| контрольного задания)      |                                    | задания      |
| Проектное задание          | Учебный проект (курсовой,          | 1            |
|                            | исследовательский, обучающий,      |              |
|                            | сервисный, социальный творческий,  |              |
|                            | рекламно-презентационный)          |              |
| Реферативное задание       | Реферат                            | 2            |
| Расчетная задача           | Контрольная работа, индивидуальное | 3            |
|                            | домашнее задание, лабораторная     |              |
|                            | работа, практические занятия,      |              |
|                            | письменный экзамен                 |              |
| Поисковая задача           | Контрольная работа, индивидуальное | 4            |
|                            | домашнее задание                   |              |
| Аналитическая задача       | Контрольная работа, индивидуальное | 5            |
|                            | домашнее задание                   |              |
| Графическая задача         | Контрольная работа, индивидуальное | 6            |
|                            | домашнее задание                   |              |
| Задача на программирование | Контрольная работа, Индивидуальное | 7            |
|                            | домашнее задание                   |              |
| Тест, тестовое задание     | Тестирование, письменный экзамен   | 8            |
| Практическое задание       | Лабораторная работа, практические  | 9            |
|                            | занятия, практический экзамен      |              |
| Экзаменационное задание    | Письменный/устный экзамен          | 10           |
| Ролевое задание            | Деловая игра                       | 11           |
| Исследовательское задание  | Исследовательская работа           | 12           |
| Доклад, сообщение          |                                    | 13           |
| Задание на ВКР дипломный   | Выпускная квалификационная работа  | 14           |
| проект                     | СПО (ППССЗ)                        |              |
| Задание на ВКР дипломная   | Выпускная квалификационная работа  | 15           |
| работа                     | СПО (ППССЗ)                        |              |
| Задание на ВКР письменная  | Выпускная квалификационная работа  | 16           |
| экзаменационная работа     | СПО (ППРКС)                        |              |
| Задание на ВКР             | Выпускная квалификационная работа  | 17           |
| выпускная практическая     | СПО (ППРКС)                        |              |
| квалификационная работа    |                                    |              |

## Тест

## по теме: «Электрическое сопротивление и проводимость»

- 1. Длину и диаметр проводника увеличили в 2 раза. Как изменится сопротивление проводника?
  - А) не измениться
  - Б) уменьшится в 2 раза
  - В) увеличится в 2 раза
- 2. Известно сопротивление проводника R при t = 20 C, его длина L и площадь поперечного сечения S: R = 4,2 Oм; L=10 м; S=1 мм. Определить материалпроводника.
  - А) Фехраль
  - Б) Алюминий
  - В) Манганин
  - Г) Нихром
- 3. Почему спираль ползункового реостата не изготовляют из медного провода
  - А) его сопротивление незначительно
  - Б) он будет громоздким
- 4. Обязательно ли в качестве материала для изготовления резисторов использовать металлы?
  - А) не обязательно
  - Б) обязательно
- 5. Как изменится проводимость проводника при увеличении площади его поперечного сечения S?

- А) увеличится
- Б) уменьшится

5 баллов – оценка «5»

4 балла – оценка «4»

3 балла – оценка «3»

Менее 3 баллов – оценка «2»

## Эталоны ответов на тест

#### по теме: «Электрическое сопротивление и проводимость»

- 1. Длину и диаметр проводника увеличили в 2 раза. Как изменится сопротивление проводника?
  - А) не измениться

#### Б) уменьшится в 2 раза

- В) увеличится в 2 раза
- 2. Известно сопротивление проводника R при t = 20 C, его длина L и площадь поперечного сечения S: R = 4,2 Ом; L=10 м; S=1 мм. Определитьматериал проводника.
  - А) Фехраль\_

#### Б) Алюминий

- В) Манганин
- Г) Нихром

3. Почему спираль ползункового реостата не изготовляют из медного провода

#### А) его сопротивление незначительно

- Б) он будет громоздким
- 4. Обязательно ли в качестве материала для изготовления резисторов использовать металлы?
  - А) не обязательно

#### Б) обязательно

- 5. Как изменится проводимость проводника при увеличении площади его поперечного сечения S?
  - А) увеличится
  - Б) уменьшится

#### За каждый правильный ответ 1 балл

5 баллов – оценка «5»

4 балла – оценка «4»

3 балла – оценка «3»

Менее 3 баллов – оценка «2»

## Тест

## по теме: «Электрическая работа и мощность. Преобразование электрической энергии в тепловую»

- 1. Изменятся ли потери энергии внутри источника при изменении сопротивления внешнего участка цепи при условии, что ЭДС E = const?
  - А) изменяться
  - Б) не изменятся
- 2. Два источника имеют одинаковые ЭДС и токи, но различные внутренние сопротивления. Какой из источников имеет большой КПД?
  - А) КПД источников равны
  - Б) с меньшим внутренним сопротивлением
  - В) с большим внутренним сопротивлением
- 3. Как изменится количество теплоты, выделяющейся в нагревательном приборе, при ухудшении контакта в штепсельной розетке?
  - А) не изменится
  - Б) увеличится
  - В) уменьшится
- 4. Какая из формул для определения теплоты, выделяющейся в проводнике, является наиболее универсальной?
  - A) Q=I\*R\*t
  - Б) Q=U/R\*t

- B) Q=U\*I\*t
- $\Gamma$ ) Q=W
- 5. Для нагревания воды в баке применяют электрическую печь, ток которой равен 10 А при напряжении 120В. Определить КПД печи, если для нагревания волы затрачивается 250 кДж и нагревание продолжается 4,5 мин.?
  - A) 77%
  - Б) 4,6%

5 баллов – оценка «5»

4 балла – оценка «4»

3 балла – оценка «3»

Менее 3 баллов – оценка «2»

## Эталоны ответов на тест

по теме: «Электрическая работа и мощность. Преобразование электрической энергии в тепловую»

- 1. Изменятся ли потери энергии внутри источника при изменении сопротивления внешнего участка цепи при условии, что ЭДС E = const?
  - А) изменяться

#### Б) не изменятся

2. Два источника имеют одинаковые ЭДС и токи, но различные внутренние сопротивления. Какой из источников имеет большой КПД?

- А) КПД источников равны\_
- Б) с меньшим внутренним сопротивлением
- В) с большим внутренним сопротивлением
- 3. Как изменится количество теплоты, выделяющейся в нагревательном приборе, при ухудшении контакта в штепсельной розетке?
  - А) не изменится

#### Б) увеличится

- В) уменьшится
- 4. Какая из формул для определения теплоты, выделяющейся в проводнике, является наиболее универсальной?
  - A) Q=I\*R\*t
  - Б) Q=U/R\*t
  - B) O=U\*I\*t
  - $\Gamma$ ) Q=W
- 5. Для нагревания воды в баке применяют электрическую печь, ток которой равен 10 А при напряжении 120В. Определить КПД печи, если для нагревания волы затрачивается 250 кДж и нагревание продолжается 4,5 мин.?
  - A) 77%
  - <u>Б) 4,6%</u>

#### За каждый правильный ответ 1 балл

5 баллов – оценка «5»

4 балла – оценка «4»

3 балла – оценка «3»

## Тест

## по теме: «Преобразование механической энергии в электрическую»

| 1. | Какое соотношение между силой G и электромагнитной силой F невозможно? A) G=F Б) G>F B) G <f< th=""></f<>           |
|----|---------------------------------------------------------------------------------------------------------------------|
| 2. | Каков характер движения груза в устройстве, после того как электромагнитная сила F сопротивления уравновесит силу G |
|    | А) равнозамедленный                                                                                                 |
|    | Б) равноускоренный                                                                                                  |
|    | В) равномерный                                                                                                      |
| 3. | Как будет двигаться груз в рассматриваемом устройстве, если разорвать цепь тока?<br>А) равномерно                   |
|    | Б) равнозамедленно                                                                                                  |
|    | В) равноускоренно                                                                                                   |
| 4. | Как зависит установившаяся скорость движения груза от сопротивления нагрузки R?                                     |
|    | A) не зависит от R                                                                                                  |
|    | Б) с увеличением R увеличивается                                                                                    |

В) с увеличением R уменьшается

- 5. Какое из приведённых уравнений достаточно полно характеризует режим работы генератора: E=B\*1\*u; F=B\*1\*I; E=IR+IRBT?
  - A) E = B \* 1 \* u; F = B\*1\*I
  - Б) E = B \* 1 \* u;
  - B) F = B\*l\*I
  - $\Gamma$ ) E=IR+IRBT; E= B \* 1 \* u; F= B\*1\*I;

5 баллов – оценка «5»

4 балла – оценка «4»

3 балла – оценка «3»

Менее 3 баллов – оценка «2»

## Эталоны ответов на тест

### по теме: «Преобразование механической энергии в электрическую»

- 1. Какое соотношение между силой G и электромагнитной силой F невозможно?
  - A) G=F
  - Б) G>F

#### **B) G<F**

- 2. Каков характер движения груза в устройстве, после того как электромагнитная сила F сопротивления уравновесит силу G?
  - А) равнозамедленный
  - Б) равноускоренный

#### В) равномерный

- 3. Как будет двигаться груз в рассматриваемом устройстве, если разорвать цепь тока?
  - А) равномерно
  - Б) равнозамедленно
  - В) равноускоренно
- 4. Как зависит установившаяся скорость движения груза от сопротивления нагрузки R?
  - A) не зависит от R
  - Б) с увеличением R увеличивается

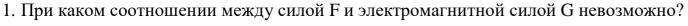
#### В) с увеличением R уменьшается

- 5. Какое из приведённых уравнений достаточно полно характеризует режим работы генератора: E=B\*1\*u; F=B\*1\*I; E=IR+IRBT?
  - A) E = B \* 1 \* u; F = B\*1\*I
  - Б) E = B \* 1 \* u;
  - B) F = B\*l\*I

#### $\Gamma$ ) E=IR+IRBT; E= B \* l \* u; F= B\*l\*I;

#### За каждый правильный ответ 1 балл

5 баллов – оценка «5»


4 балла – оценка «4»

3 балла – оценка «3»

Менее 3 баллов – оценка «2»

## Тест

## по теме: «Преобразование электрической энергии в механическую»



- A) G=F
- Б) G<F
- D) G>F
- 2. По какой формуле можно определить ток в цепи двигателя в момент пуска?
  - A)  $I=(U-E)/R_{BT}$
  - $\mathbf{F}$ )  $\mathbf{I}=\mathbf{U}/\mathbf{R}_{\mathbf{BT}}$
  - B)  $I = (E-U)/R_{BT}$
- 3. Каков характер движения груза под действием электромагнитной силы после пуска двигателя ?
  - А) сначала равноускоренный, а затемравномерный
  - Б) всё время равноускоренный
  - В) всё время равномерный
- 4. Как зависит скорость движения груза в рассматриваемом устройстве от его массы?
  - А) не зависит от массыгруза
  - Б) при увеличении массы уменьшается
  - В) при увеличением массы увеличивается
- 5. Из какого уравнения можно определить скорость движения проводника, если груз отсутствует (холостой ход двигателя)?

A) 
$$U = E + IR_{BT}$$

Б) 
$$E = B * 1 * u;$$

B) 
$$E=U$$

5 баллов – оценка «5»

4 балла – оценка «4»

3 балла – оценка «3»

Менее 3 баллов – оценка «2»

## Эталоны ответов на тест

## по теме: «Преобразование электрической энергии в механическую»

- 1. При каком соотношении между силой F и электромагнитной силой G невозможно?
- A) G=F
- Б) G<F

#### **D) G>F**

- 2. По какой формуле можно определить ток в цепи двигателя в момент пуска?
- A)  $I=(U-E)/R_{BT}$

#### **Б)** I=U/Rвт

- B)  $I=(E-U)/R_{BT}$
- 3. Каков характер движения груза под действием электромагнитной силы после пуска двигателя?

## А) сначала равноускоренный, а затем равномерный

- Б) всё время равноускоренный
- В) всё время равномерный
- 4. Как зависит скорость движения груза в рассматриваемом устройстве от его массы?

#### А) не зависит от массы груза

- Б) при увеличении массы уменьшается
- В) при увеличением массы увеличивается
- 5. Из какого уравнения можно определить скорость движения проводника, если груз отсутствует (холостой ход двигателя)?
  - A)  $U = E + IR_{BT}$
  - $\mathbf{E}$ )  $\mathbf{E}$ =  $\mathbf{B} * \mathbf{l} * \mathbf{u}$ ;
  - B) E= U

#### За каждый правильный ответ 1 балл

5 баллов – оценка «5»

4 балла – оценка «4»

3 балла – оценка «3»

Менее 3 баллов – оценка «2»

## Тест

#### по теме: «Пуск асинхронного двигателя»

- 1. Напряжение сети 220 В. В паспорте асинхронного двигателя указано напряжение 127/220 В. Как должны быть соединены обмотки статора двигателя в рабочем режиме?
  - А) треугольником
  - Б) звездой
- 2. Напряжение сети 127 В. В паспорте асинхронного двигателя указано напряжение 127/220 В. Как должны быть соединены обмотки статора двигателя: а) при пуске; б) в рабочем режиме;
  - А) звездой; Б) треугольником
  - А) звездой; Б) звездой
  - А) треугольником; Б) треугольником
  - А) треугольником; Б) звездой
- 3. При скольжении, равном 1, вращающий момент равен 1 Н \*м, момент нагрузки на валу двигателя 1,5 Н\*м, опрокидывающий момент 2 Н\*м. Можно ли запустить этот двигатель поднагрузкой?
  - А) можно
  - Б) нельзя
- 4. Рассмотренный двигатель раскрутили на холостом ходу (без нагрузки) до
  - S<S opt. Указать максимальный момент нагрузки на валу, при котором двигатель не остановится ?
  - A) 1 H \*M
  - Б) 2 H \*м
  - B) 3 H\*M

- 5. Какие меры принимают для увеличения пускового момента у двигателя с фазным ротором?
  - А) применяют ротор с двойной «беличьей клеткой»
  - Б) применяют ротор с глубоким пазом
  - В) в цепь обмотки ротора вводят пусковые реостаты

5 баллов – оценка «5»

4 балла – оценка «4»

3 балла – оценка «3»

Менее 3 баллов – оценка «2»

## Эталоны ответов на тест

#### по теме: «Пуск асинхронного двигателя»

- 1. Напряжение сети 220 В. В паспорте асинхронного двигателя указано напряжение 127/220 В. Как должны быть соединены обмотки статора двигателя в рабочем режиме?
  - А) треугольником

#### Б) звездой

- 2. Напряжение сети 127 В. В паспорте асинхронного двигателя указано напряжение 127/220 В. Как должны быть соединены обмотки статора двигателя: а) при пуске; б) в рабочем режиме;
  - А) звездой; Б) треугольником

#### А) звездой;Б) звездой

- А) треугольником; Б) треугольником
- А) треугольником; Б) звездой

- 3. При скольжении, равном 1, вращающий момент равен 1 Н \*м, момент нагрузки на валу двигателя 1,5 Н\*м, опрокидывающий момент 2 Н\*м. Можно ли запустить этот двигатель поднагрузкой?
  - А) можно

#### Б) нельзя

4. Рассмотренный двигатель раскрутили на холостом ходу (без нагрузки) до

S<S орт. Указать максимальный момент нагрузки на валу, при котором двигатель не остановится?

#### A) 1 H \*M

- Б) 2 H \*м
- B) 3 H \*<sub>M</sub>
- 5. Какие меры принимают для увеличения пускового момента у двигателя с фазным ротором?

#### А) применяют ротор с двойной «беличьей клеткой»

- Б) применяют ротор с глубоким пазом
- В) в цепь обмотки ротора вводят пусковые реостаты

#### За каждый правильный ответ 1 балл

5 баллов – оценка «5»

4 балла – оценка «4»

3 балла – оценка «3»

Менее 3 баллов – оценка «2»

## Тест

по теме: «КПД и коэффициент мощности асинхронного двигателя»

| 1. | Как изменяются при увеличении нагрузки асинхронного двигателя потери энергии: а) в меди; б) в стали?                                                                       |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | А) увеличиваются Б) увеличиваются                                                                                                                                          |
|    | А) увеличиваются Б) не изменяются                                                                                                                                          |
|    | А) не изменяются Б) увеличиваются                                                                                                                                          |
| 2. | Ваттметр, подключённый к асинхронному двигателю, показывает при номинальной нагрузке 1 кВт; при холостом ходе 50Вт; при коротком замыкании 50Вт. Определить КПД двигателя. |
|    | А) для решения задачи недостаточно данных                                                                                                                                  |
|    | Б) 90%                                                                                                                                                                     |
|    | B) 95%                                                                                                                                                                     |
| 3. | Чему равен КПД двигателя, работающего в режиме холостого хода ? А) 0                                                                                                       |
|    | Б) 90%                                                                                                                                                                     |
|    | В) для ответа на вопрос недостаточноданных                                                                                                                                 |
| 4. | На какую мощность должен быть рассчитан генератор, питающий асинхронный двигатель, который развивает на валу механическую мощность $5 \text{ kBt}$ при $\cos f = 0.5$ ?    |
|    | A) 1 κBA                                                                                                                                                                   |
|    | Б) 25 кВА                                                                                                                                                                  |
|    | В) 10 кВА                                                                                                                                                                  |
| 5. | Как изменится коэффициент мощности асинхронного двигателя при уменьшении его нагрузки?                                                                                     |
|    | А) не изменится                                                                                                                                                            |

- Б) увеличится
- В) уменьшится

5 баллов – оценка «5»

4 балла – оценка «4»

3 балла – оценка «3»

Менее 3 баллов – оценка «2»

## Эталоны ответов на тест

### по теме: «КПД и коэффициент мощности асинхронного двигателя»

1. Как изменяются при увеличении нагрузки асинхронного двигателя потери энергии: а) в меди; б) в стали?

#### А) увеличиваются Б)увеличиваются

- А) увеличиваются Б) не изменяются
- А) не изменяются Б) увеличиваются
- 2. Ваттметр, подключённый к асинхронному двигателю, показывает при номинальной нагрузке 1 кВт; при холостом ходе 50Вт; при коротком замыкании 50Вт. Определить КПД двигателя.

#### А) для решения задачи недостаточно данных

- Б) 90%
- B) 95%
- 3. Чему равен КПД двигателя, работающего в режиме холостого хода?

#### **A)** 0

Б) 90%

- В) для ответа на вопрос недостаточно данных
- 4. На какую мощность должен быть рассчитан генератор, питающий асинхронный двигатель, который развивает на валу механическую мощность 5 kBt при  $\cos f = 0.5$ ?
  - A) 1 κBA

#### <u>Б) 25 кВА</u>

- B) 10 κBA
- 5. Как изменится коэффициент мощности асинхронного двигателя при уменьшении его нагрузки?
  - А) не изменится
  - Б) увеличится
  - В) уменьшится

#### За каждый правильный ответ 1 балл

5 баллов – оценка «5»

4 балла – оценка «4»

3 балла – оценка «3»

Менее 3 баллов – оценка «2»

## Тест

по теме: «Реле»

- 1. На вход реле подан сигнал (ток, напряжение), достаточный для срабатывания. Какой случай не реален?
  - А) сигналы на входе и выходе реле плавноувеличиваются
  - Б) сигнал на входе увеличивается плавно, сигнал на выходе скачком

|    | В) сигнал на входе увеличивается скачком, сигнал на выходе – тоже скачком                                               |
|----|-------------------------------------------------------------------------------------------------------------------------|
| 2. | Чему равно время срабатыванияреле?                                                                                      |
|    | А) времени нарастания тока в обмотке реле до значения тока срабатывания                                                 |
|    | Б) времени движения якоря реле                                                                                          |
|    | В) сумме указанных выше значений                                                                                        |
| 3. | Вследствие гистерезиса ток срабатывания $Icp$ реле не равен току пускания $Iomn$ . Какой ток больше? A) $Icp > Iomn$    |
|    | F(F) F(F(F)) F(F(F))                                                                                                    |
|    | В) это зависит от площади петли гистерезиса                                                                             |
| 4. | Как называется реле, у которого направление отклонения якоря зависит от направления тока в обмотке? А) электромагнитное |
|    | Б) поляризованное                                                                                                       |
|    | В) электронное                                                                                                          |
|    | Г) реле времени                                                                                                         |
| 5. | Как изменится время срабатывания реле времени, если сопротивление R увеличить?                                          |
|    | А) увеличится                                                                                                           |
|    | Б) не изменится                                                                                                         |
|    | В) уменьшится                                                                                                           |
|    | За каждый правильный ответ 1 балл                                                                                       |
|    | 5 баллов — оценка «5»                                                                                                   |

4 балла – оценка «4» 3 балла – оценка «3» Менее 3 баллов – оценка «2»

## Эталоны ответов на тест

по теме: «Реле»

- 1. На вход реле подан сигнал (ток, напряжение), достаточный для срабатывания. Какой случай не реален?
  - А) сигналы на входе и выходе реле плавно увеличиваются

#### Б) сигнал на входе увеличивается плавно, сигнал на выходе - скачком

- В) сигнал на входе увеличивается скачком, сигнал на выходе тоже скачком
- 2. Чему равно время срабатыванияреле?
  - А) времени нарастания тока в обмотке реле до значения тока срабатывания
  - Б) времени движения якоря реле
  - В) сумме указанных выше значений
- 3. Вследствие гистерезиса ток срабатывания *Іср* реле не равен току пускания *Іотп*. Какой ток больше?

#### A) Icp > Iomn

- Б) Icp < Iomn
- В) это зависит от площади петли гистерезиса
- 4. Как называется реле, у которого направление отклонения якоря зависит от направления тока в обмотке?

#### А) электромагнитное

- Б) поляризованное
- В) электронное
- Г) реле времени
- 5. Как изменится время срабатывания реле времени, если сопротивление R увеличить?

#### А) увеличится

- Б) не изменится
- В) уменьшится

#### За каждый правильный ответ 1 балл

5 баллов – оценка «5»

4 балла – оценка «4»

3 балла – оценка «3»

Менее 3 баллов – оценка «2»

## Тест

## по теме: «Погрешности измерительных приборов»

- 1. Какие методы измерения применяются: а) в лабораториях; б) на подвижных объектах?
  - А) метод сравнения; метод непосредственной оценки
  - Б) метод непосредственной оценки; метод сравнения
- 2. Чем характеризуется точность измерения?
  - А) условиями эксперимента

| Б) качеством измерительного прибора        |                                                                           |
|--------------------------------------------|---------------------------------------------------------------------------|
| В) относительной погрешностью измерен      | Я                                                                         |
| Г) точностью отсчёта                       |                                                                           |
| В цепи протекает ток 20А. Амперметр показ  | зывает 20,1 А Шкала прибора 0-50 А. Установить: а) точность измерения; б) |
| точность прибора?                          |                                                                           |
| A) 0,1 A; 0,1 A                            |                                                                           |
| Б) 0,5%; 0,2%                              |                                                                           |
| B) 0,05A; 0,02A                            |                                                                           |
| Γ) 5%; 0,2%                                |                                                                           |
| Класс точности прибора 1,0 Чему равна при  | иведённая погрешность прибора?                                            |
| A) 1                                       |                                                                           |
| Б) 1,5                                     |                                                                           |
| B) 1%                                      |                                                                           |
| Шкала амперметра 0-50 А. Прибором измер    | рены токи: а) 3А; б) 30А. Какое из измеренных значений точнее?            |
| А) задача не определена, так как не извест | ген класс точности прибора                                                |
| Б) первое                                  |                                                                           |
| В) второе                                  |                                                                           |
| · · · · ·                                  | за каждый правильный ответ 1 балл                                         |
|                                            | 5 баллов – оценка «5»                                                     |
|                                            | 4 балла – оценка «4»                                                      |
|                                            | 3 балла – оценка «3»                                                      |

3.

4.

5.

## Эталоны ответов на тест

## по теме: «Погрешности измерительных приборов»

1. Какие методы измерения применяются: а) в лабораториях; б) на подвижныхобъектах?

#### А) метод сравнения; метод непосредственной оценки

- Б) метод непосредственной оценки; метод сравнения
- 2. Чем характеризуется точность измерения?
  - А) условиями эксперимента
  - Б) качеством измерительного прибора

#### В) относительной погрешностью измерения

- Г) точностью отсчёта
- 3. В цепи протекает ток 20А. Амперметр показывает 20,1А Шкала прибора 0-50А. Установить: а) точность измерения; б) точность прибора?
  - A) 0,1 A; 0,1 A
  - Б) 0,5%; 0,2%
  - B) 0,05A; 0,02A
  - Γ) 5%; 0,2%
- 4. Класс точности прибора 1,0 Чему равна приведённая погрешность прибора?

- A) 1
- Б) 1,5

#### B) 1%

- 5. Шкала амперметра 0-50 А. Прибором измерены токи: а) 3А; б) 30А. Какое из измеренных значений точнее?
  - А) задача не определена, так как не известен класс точности прибора
  - Б) первое
  - В) второе

#### За каждый правильный ответ 1 балл

5 баллов – оценка «5»

4 балла – оценка «4»

3 балла – оценка «3»

Менее 3 баллов – оценка «2»

## Тест

## по теме: «Индукционный счётчик электрической энергии. Учёт энергии в однофазных и трёхфазных цепях»

- 1. Как соотносится по фазе магнитные потоки обмотки напряжения и токовой обмо тки индукционного счётчика электрической энергии?
  - А) совпадают по фазе
  - Б) сдвинуты на уголблизкий к  $90^0$

| 2. | Чему пропорциональны: а) вращающий; б) тормозной моменты, действующие на диск счётчика? А) мощности; углу поворота диска Б) мощности; частоте вращения диска В) энергии; частоте вращения диска                                      |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3. | Частота вращения диска счётчика увеличилась в 2 раза. Как изменится мощность, потребляемая нагрузкой сети? А) не изменилась Б) увеличилась в 2 раза В) сделать выводы относительно мощности нельзя, так как счётчик измеряет энергию |
| 4. | Чему пропорциональны: а) мощность; б) энергия, потребляемая нагрузкой сети? А) частоте вращения диска Б) частоте вращения диска; числу оборотов диска В) числу оборотов диска                                                        |
| 5. | Сколько зажимов необходимо для включения однофазного счётчика в сеть?  А) 2 Б) 4 В) 6 За каждый правильный ответ 1 балл                                                                                                              |
|    | 5 баллов — оценка «5»<br>4 балла — оценка «4»<br>3 балла — оценка «3»                                                                                                                                                                |

## Эталоны ответов на тест

## по теме: «Индукционный счётчик электрической энергии. Учёт энергии в однофазных и трёхфазных цепях»

- 1. Как соотносится по фазе магнитные потоки обмотки напряжения и токовой обмотки индукционного счётчика электрической энергии?
  - А) совпадают по фазе
  - **Б)** сдвинуты на угол близкий к 90<sup>0</sup>
- 2. Чему пропорциональны: а) вращающий; б) тормозной моменты, действующие на диск счётчика?
  - А) мощности; углу поворота диска

#### Б) мощности; частоте вращения диска

- В) энергии; частоте вращения диска
- 3. Частота вращения диска счётчика увеличилась в 2 раза. Как изменится мощность, потребляемая нагрузкой сети?
  - А) не изменилась

#### Б) увеличилась в 2 раза

- В) сделать выводы относительно мощности нельзя, так как счётчик измеряет энергию
- 4. Чему пропорциональны: а) мощность; б) энергия, потребляемая нагрузкой сети?
  - А) частоте вращения диска

Б) частоте вращения диска; числу оборотов диска

#### В) числу оборотов диска

- 5. Сколько зажимов необходимо для включения однофазного счётчика в сеть?
  - A) 2
  - <u>Б) 4</u>
  - B) 6

#### За каждый правильный ответ 1 балл

5 баллов – оценка «5»

4 балла – оценка «4»

3 балла – оценка «3»

Менее 3 баллов – оценка «2»

## Тест

по теме: «Действие электрического тока на организм человека. Понятие о напряжении прикосновения. Допустимые значения напряжения прикосновения»

- 1. Какой электрический параметр оказывает непосредственное физиологическое воздействие на организм человека?
  - А) напряжение
  - Б) мощность
  - В) ток
  - Г) напряжённость

| 2. | Электрическое сопротивление тела человека 5000 Ом. Какой ток проходит через него, если человек находится под |
|----|--------------------------------------------------------------------------------------------------------------|
|    | напряжением 380 В?                                                                                           |
|    | А) 19 мА                                                                                                     |
|    | Б) 38 мА                                                                                                     |
|    | В) 76 мА                                                                                                     |
|    | Г) 50 мА                                                                                                     |
| 3. | Какой ток наиболее опасен при прочих равных условиях?                                                        |
|    | А) постоянный                                                                                                |
|    | Б) переменный с частотой 50 Гц                                                                               |
|    | В) переменный с частотой 50 МГц                                                                              |
|    | Г) опасность во всех случаях одинакова                                                                       |
| 4. | Укажите наибольшее и наименьшее допустимые напряжения прикосновения, установленные правилами техники         |
|    | безопасности в зависимости от внешних условий?                                                               |
|    | А) 127 и 6 В                                                                                                 |
|    | Б) 65 и 12 В                                                                                                 |
|    | В) 36 и 12 В                                                                                                 |
|    | Г) 65 и 6 В                                                                                                  |
| 5. | Опасен ли для человека источник электрической энергии, ЭДС которого 3 000 В, внутреннее сопротивление 1 МОм? |
|    | А) опасен                                                                                                    |
|    | Б) не опасен                                                                                                 |
|    | В) опасен при некоторых условиях                                                                             |
|    | За каждый правильный ответ 1 балл                                                                            |
|    | 5 баллов — оценка «5»                                                                                        |
|    | 4 балла – оценка «4»                                                                                         |
|    | 3 балла – оценка «3»                                                                                         |

## Эталоны ответов на тест

по теме: «Действие электрического тока на организм человека. Понятие о напряжении прикосновения. Допустимые значения напряжения прикосновения»

- 1. Какой электрический параметр оказывает непосредственное физиологическое воздействие на организм человека?
  - А) напряжение
  - Б) мощность

#### В) ток

- Г) напряжённость
- 2. Электрическое сопротивление тела человека 5000 Ом. Какой ток проходит через него, если человек находится под напряжением 380 В?
  - А) 19 мА
  - Б) 38 мА

#### **B)** 76 mA

- Г) 50 мА
- 3. Какой ток наиболее опасен при прочих равных условиях?
  - А) постоянный

#### Б) переменный с частотой 50 Гц

- В) переменный с частотой 50 МГц
- Г) опасность во всех случаях одинакова
- 4. Укажите наибольшее и наименьшее допустимые напряжения прикосновения, установленные правилами техники безопасности в зависимости от внешних условий?
  - А) 127 и 6 В

Б) 65 и 12В

### B) 36 u 12 B

- Г) 65 и 6 В
- 5. Опасен ли для человека источник электрической энергии, ЭДС которого 3 000 В, внутреннее сопротивление 1 МОм?

## А) опасен

- Б) не опасен
- В) опасен при некоторых условиях

### За каждый правильный ответ 1 балл

5 баллов – оценка «5»

4 балла – оценка «4»

3 балла – оценка «3»

Менее 3 баллов – оценка «2»

# Тест

## по теме: «Защитное заземление трёхпроводных цепей трёхфазного тока»

- 1. Электропроводность изоляции одного метра провода равна  $10^{-7}$  См/м. Определить: а) электропроводность; б) сопротивление изоляции провода длинной 2 км?
  - A) 5\*10<sup>-10</sup> См; 0,2\*10<sup>10</sup> Ом
  - Б) 2\*10<sup>-4</sup> См; 5\*10<sup>3</sup> Ом
  - В) 2\*10<sup>-3</sup> См; 0,5\*10<sup>3</sup> Ом
  - Г) 10 См; 0,1 Ом
- 2. Определить ток утечки рассмотренного выше провода при напряжении 380 В?
  - А) 19 мА

| Б) 38 мА                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------|
| В) 76 мА                                                                                                           |
| Г) 50 мА                                                                                                           |
| Параллельно сопротивлению изоляции рассмотренного выше провода подключено тело человека с со противлением 2 600    |
| Ом. Какая часть найденного тока утечки проходит через тело человека?                                               |
| А) 20 мА                                                                                                           |
| Б) 30 мА                                                                                                           |
| В) 40мА                                                                                                            |
| Г) 50мА                                                                                                            |
| Какой ток будет проходить через тело человека в условиях, рассмотренных выше, если параллельно человеку подключить |
| заземлитель с сопротивлением 10 Ом?                                                                                |
| А) 76 мА                                                                                                           |
| Б) 50 мА                                                                                                           |
| B) 5 mA                                                                                                            |
| Г) значительно меньше 1 мА                                                                                         |
| Какие части электрических установок заземляются?                                                                   |
| А) соединённые с токоведущими деталями                                                                             |
| Б) изолированные от токоведущих деталей                                                                            |
| За каждый правильный ответ 1 балл                                                                                  |
| 5 баллов – оценка «5»                                                                                              |
| 4 балла – оценка «4»                                                                                               |
| 3 балла – оценка «3»                                                                                               |
| Менее 3 баллов – оценка «2»                                                                                        |

3.

4.

5.

# Эталоны ответов на тест

## по теме: «Защитное заземление трёхпроводных цепей трёхфазного тока»

- 1. Электропроводность изоляции одного метра провода равна  $10^{-7}$  См/м. Определить: а) электропроводность; б) сопротивление изоляции провода длинной 2 км?
  - A) 5\*10<sup>-10</sup> См; 0,2\*10<sup>10</sup> Ом
  - Б) 2\*10<sup>-4</sup> См; 5\*10<sup>3</sup> Ом
  - **В)** 2\*10<sup>-3</sup> См; 0,5\*10<sup>3</sup> Ом
  - Г) 10 См; 0,1 Ом
- 2. Определить ток утечки рассмотренного выше провода при напряжении 380 В?

#### A) 19 MA

- Б) 38 мА
- В) 76 мА
- Г) 50 мА
- 3. Параллельно сопротивлению изоляции рассмотренного выше провода подключено тело человека с сопротивлением 2 600 Ом. Какая часть найденного тока утечки проходит через тело человека?
  - A) 20 mA

#### **Б)** 30 мА

- В) 40мА
- Г) 50мА
- 4. Какой ток будет проходить через тело человека в условиях, рассмотренных выше, если параллельно человеку подключить заземлитель с сопротивлением 10 Ом?

- A) 76 MA
- Б) 50 мА
- B) 5 MA

#### Г) значительно меньше 1 мА

5. Какие части электрических установок заземляются?

#### А) соединённые с токоведущими деталями

Б) изолированные от токоведущих деталей

### За каждый правильный ответ 1 балл

5 баллов – оценка «5»

4 балла – оценка «4»

3 балла – оценка «3»

Менее 3 баллов – оценка «2»

# Тест

## по теме: «Защитное заземление четырёхпроводных цепей трёхфазного тока »

- 1. Допустимо ли заземление средней точки генератора или питающего трансформатора для повышения безопасности в трёхпроводной трёхфазнойцепи?
  - А) допустимо
  - Б) такое заземление нецелесообразно, так как не влияет на условиябезопасности
  - В) такое заземление недопустимо, так как резко увеличивается вероятность поражения током
- 2. Через параллельно соединённые заземлитель и тело человека проходит ток короткого замыкания 30 А. Сопротивление заземлителя 10 Ом. Сопротивление тела человека 2 990 Ом. Определить ток, проходящий через тело человека?
  - A) 10 MA
  - Б) 29 мА

- В) 50 мА
- Г) 100 мА
- 3. Можно ли для повышения безопасности корпус двигателя, соединённый с заземлённой нейтралью, заземлить при помощи специального заземлителя?
  - А) можно
  - Б) нельзя
  - В) можно, но нецелесообразно
- 4. Можно ли заземлить корпус двигателя, не соединённый с заземлённой нейтралью?
  - А) можно
  - Б) нельзя
  - В) можно, но нецелесообразно
- 5. Сработает ли защита из плавких предохранителей при пробое на корпус двигателя: а) трёхпроводной; б) четырёхпроводной сетях трёхфазного тока?
  - А) да
  - Б) нет
  - В) да; нет
  - Г) нет; да

# За каждый правильный ответ 1 балл

5 баллов – оценка «5»

4 балла – оценка «4»

3 балла – оценка «3»

Менее 3 баллов – оценка «2»

# Эталоны ответов на тест

по теме: «Защитное заземление четырёхпроводных цепей трёхфазного тока»

- 1. Допустимо ли заземление средней точки генератора или питающего трансформатора для повышения безопасности в трёхпроводной трёхфазнойцепи?
  - А) допустимо
  - Б) такое заземление нецелесообразно, так как не влияет на условиябезопасности

## В) такое заземление недопустимо, так как резко увеличивается вероятность поражения током

**2.** Через параллельно соединённые заземлитель и тело человека проходит ток короткого замыкания 30 А. Сопротивление заземлителя 10 Ом. Сопротивление тела человека 2 990 Ом. Определить ток, проходящий через тело человека?

### A) 10 MA

- Б) 29 мА
- В) 50 мА
- Г) 100 мА
- 3. Можно ли для повышения безопасности корпус двигателя, соединённый с заземлённой нейтралью, заземлить при помощи специального заземлителя?
  - А) можно

#### Б) нельзя

- В) можно, но нецелесообразно
- 4. Можно ли заземлить корпус двигателя, не соединённый с заземлённой нейтралью?

#### А) можно

- Б) нельзя
- В) можно, но нецелесообразно
- 5. Сработает ли защита из плавких предохранителей при пробое на корпус двигателя: а) трёхпроводной; б) четырёхпроводной сетях трёхфазного тока?

#### <u>А) да</u>

Б) нет

- В) да; нет
- Г) нет; да

## За каждый правильный ответ 1 балл

5 баллов – оценка «5»

4 балла – оценка «4»

3 балла – оценка «3»

Менее 3 баллов – оценка «2»

# Тест

# по теме: «Устройство и простейший расчёт заземлителей»

- 1. В каких случаях допускается сопротивление заземлителя больше 4 Ом, но меньше 10 Ом?
  - А) при мощности сети, превышающей 100 кВт
  - Б) при мощности сети, меньшей 100 кВт
  - В) при мощности сети, равной 100 кВт
- 2. Можно ли при мощности сети, меньшей 100 кВт, использовать естественные заземлители с общим сопротивлением 1 Ом?
  - А) можно
  - Б) нельзя
- 3. В суглинистую почву погружен заземлитель в виде трубы длинной 2 м. Определить сопротивление заземлителя?
  - A) 45 O<sub>M</sub>
  - Б) 50 Ом
  - В) 55 Ом
  - Г) 60 Ом

| 1  | II. X                                                                                                                                                                             |  |  |  |  |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 4. | Найти примерное количество труб (без учёта коэффициента использования), необходимое для заземления нулевого                                                                       |  |  |  |  |
|    | провода сети мощностью меньше 100 кВт?                                                                                                                                            |  |  |  |  |
|    | A) 3                                                                                                                                                                              |  |  |  |  |
|    | Б) 5                                                                                                                                                                              |  |  |  |  |
|    | B) 7                                                                                                                                                                              |  |  |  |  |
|    | Γ) 9                                                                                                                                                                              |  |  |  |  |
| 5. | Сколько рассмотренных выше труб надо разместить в суглинистой почве на расстоянии 2 м друг от друга, чтобы осуществить заземление нулевого провода сети мощностью меньше 100 кВт? |  |  |  |  |
|    | A) 9                                                                                                                                                                              |  |  |  |  |
|    | Б) 3                                                                                                                                                                              |  |  |  |  |
|    | B) 5                                                                                                                                                                              |  |  |  |  |
|    | $\Gamma$ ) 6                                                                                                                                                                      |  |  |  |  |
|    | За каждый правильный ответ 1 балл                                                                                                                                                 |  |  |  |  |
|    | 5 баллов – оценка «5»                                                                                                                                                             |  |  |  |  |
|    | 4 балла – оценка «4»                                                                                                                                                              |  |  |  |  |
|    | 3 балла – оценка «3»                                                                                                                                                              |  |  |  |  |
|    | Менее 3 баллов – оценка «2»                                                                                                                                                       |  |  |  |  |
|    | Эталоны ответов на тест                                                                                                                                                           |  |  |  |  |
|    | по теме: «Устройство и простейший расчёт заземлителей»                                                                                                                            |  |  |  |  |
| 1. | В каких случаях допускается сопротивление заземлителя больше 4 Ом, но меньше 10 Ом?                                                                                               |  |  |  |  |

А) при мощности сети, превышающей 100 кВт

Б) при мощности сети, меньшей 100 кВт В) при мощности сети, равной 100 кВ

| Можно ли при мощности сети, меньшей 100 кВт, использовать естественные заземлители с общим сопротивлением 1 Ом?<br>А) можно Б) нельзя                                                                     |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| В суглинистую почву погружен заземлитель в виде трубы длинной 2 м. Определить сопротивление заземлителя?  (A) 45 Ом (Б) 50 Ом (В) 55 Ом (Г) 60 Ом                                                         |  |  |  |  |  |  |  |
| Найти примерное количество труб (без учёта коэффициента использования), необходимое для заземления нулевого провода сети мощностью меньше 100 кВт?  А) 3 Б) 5 В) 7 Г) 9                                   |  |  |  |  |  |  |  |
| Сколько рассмотренных выше труб надо разместить в суглинистой почве на расстоянии 2 м друг от друга, чтобы осуществить заземление нулевого провода сети мощностью меньше 100 кВт?  А) 9  Б) 3  В) 5  Г) 6 |  |  |  |  |  |  |  |
| За каждый правильный ответ 1 балл                                                                                                                                                                         |  |  |  |  |  |  |  |
| 5 баллов – оценка «5»                                                                                                                                                                                     |  |  |  |  |  |  |  |
| 4 балла — оценка «4»                                                                                                                                                                                      |  |  |  |  |  |  |  |
| 3 балла – оценка «3»                                                                                                                                                                                      |  |  |  |  |  |  |  |
| Менее 3 баллов – оценка «2»                                                                                                                                                                               |  |  |  |  |  |  |  |
|                                                                                                                                                                                                           |  |  |  |  |  |  |  |

#### Вопросы к зачету

- 1. Переменный синусоидальный ток определение, получение.
- 2. Характеристики переменного синусоидальноготока.
- 3. Цепь с активным сопротивлением:схема, основные соотношения, векторная диаграмма.
- 4. Цепь с индуктивностью: схема, основные соотношения, векторнаядиаграмма.
- 5. Цепь с емкостью: схема, основные соотношения, векторная диаграмма.
- 6. Неразветвленная цепь с активным сопротивлением, индуктивностью, емкостью: схема, основные соотношения, векторная диаграмма.
- 7. Разветвленная цепь с активным сопротивлением, индуктивностью, емкостью: схема, основные соотношения, векторная диаграмма.
- 8. Ток, напряжение, сопротивление, проводимость в комплексной форме.
- 9. Мощность в цепях переменного синусоидального тока в комплексной форме.
- 10. Закон Ома в комплексной форме.
- 11. І закон Кирхгофа в комплексной форме.
- 12. ІІ закон Кирхгофа в комплексной форме.
- 13. Расчет неразветвленной цепи переменного синусоидального тока символическим методом.
- 14. Расчет разветвленной цепи переменного синусоидального тока символическим методом.
- 15.Получение трехфазной Э.Д.С.
- 16. Соединение обмоток генератора в «звезду»: схема, основные соотношения.
- 17. Соединение обмоток генератора в «звезду с нулевым проводом»: схема, основные соотношения.
- 18.Соединение обмоток генератора в «треугольник»: схема, основные соотношения.
- 19. Соединение нагрузки в «звезду с нулевым проводом»: схема, основные соотношения.
- 20.Соединение нагрузки в «треугольник»: схема, основные соотношения.
- 21. Мощность в трехфазной симметричной и несимметричной цепях.
- 22. Резонанс токов.
- 23. Резонанс напряжений.
- 24. Компенсация реактивной мощности в электрических цепях с помощью конденсаторов.

- 25. Эквивалентная схема замещения воздушного трансформатора.
- 26. Принцип работы электрического двигателя.
- 27. Принцип работы электрического генератора.
- 28. Принцип работы однофазного трансформатора.
- 29. Схемы электроснабжения.
- 30. Способы пуска электродвигателя.
- 31. Правила пайки проводов.
- 32. Устройство, принцип действия магнитного пускателя.
- 33. Устройство, принцип автоматического выключателя.
- 34. Основные характеристики электроизмерительных приборов.
- 35.Способы экономии электроэнергии.