МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ ТАТАРСТАН

Государственное бюджетное профессиональное образовательное учреждение «Альметьевский профессиональный колледж»

«Рассмотрено»	«Утверждено»		
на заседании ЦМК	Директора ГБПОУ АПК		
Председатель ЦМК			
/ Г.Р Бигашева /	/А.Ф Шарипова /		
Протокол			
№ от «»2022 г.			

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

ОП 08. Основы автоматического управления

по программе подготовки специалистов среднего звена

15.02.10 «Мехатроника и мобильная робототехника»

Федерально	ого государо	ственного (цисциплины образовательн (далее ФГОО	ого стандар	та среднего
подготовки	специалисто	в среднего	звена 15.02.10	«Мехатроника	и мобильная
робототехни	ка».				
-	я – разрабо	тчик: ГБПС	У «Альметье	евский профе	ессиональный
колледж»					
_					
Разработчи	к(и):				

Рекомендовано методическим советом протокол № от « » августа 2022 г

СОДЕРЖАНИЕ

1.	ОБЩАЯ ХАРАКТЕРИСТИКА ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ	4
2.	СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ	(
3.	УСЛОВИЯ РЕАЛИЗАЦИИ УЧЕБНОЙ ДИСЦИПЛИНЫ	13
4.	КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ УЧЕБНОЙ ЛИСПИПЛИНЫ	15

1. ОБЩАЯ ХАРАКТЕРИСТИКА ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ

ОП 08. Основы автоматического управления

1.1. Место дисциплины в структуре основной профессиональной образовательной программы:

Программа учебной дисциплины «Основы автоматического управления» является обязательной частью профессионального цикла основной образовательной программы в соответствии с ФГОС СПО по специальности 15.02.10 Мехатроника и мобильная робототехника (по отраслям).

Учебная дисциплина «Основы автоматического управления» наряду с другими учебными дисциплинами обеспечивает формирование общих и профессиональных компетенций для дальнейшего освоения профессиональных модулей.

1.2. Цель и планируемые результаты освоения дисциплины:

Код ПК,	Умения	Знания
ОК		
ПК 1.2	Разрабатывать алгоритмы	Основы автоматического управления;
	управления мехатронными	Методы визуализации процессов
	системами;	управления и работы мехатронных
	Визуализировать процесс	систем;
	управления и работу мехатронных	Методы отладки программ управления
	систем;	ПЛК
	Проводить отладку программ	
	управления мехатронными	
	системами и визуализации	
	процессов управления и работы	
	мехатроных систем	
ПК 1.3	Выполнять работы по испытанию	Правила техники безопасности при
	мехатронных систем после наладки	отладке программ управления
	и монтажа	мехатронными системами
ПК 3.3	Выбирать наиболее оптимальные	Методы оптимизации работы
	модели управления мехатронными	компонентов и модулей мехатронных
	системами;	систем
	Оптимизировать работу	
	мехатронных систем по различным	
	параметрам	
ПК 4.2		Решаемые задачи, области
		применения, обобщенный состав и
		классификация мобильных роботов;
		Особенности управления мобильными
		роботами, устройство управления
		роботом;

	T	n
		Загрузка, установка и выполнение всех
		требуемых физических и
		программных настроек, необходимых
		для эффективного использования
		всего оборудования, поставляемого
		производителями
ПК 4.3	Осуществлять настройку датчиков	Определение конкретных блоков
	различного типа при	аппаратного обеспечения (различные
	проектировании мобильных	датчики и т.п.), необходимые для
	роботов	обеспечения функционирования
	possible	робота;
		дополнительную конструкцию
		(прототип) и для управления ходом
		выполнения поставленной задачи
ПК 5.1	Интерпретировать навыки	Основные методы проектирования
	построения проектной	мобильных роботов;
	документации мобильного робота	Разработка стратегии выполнения
	при помощи соответствующего	заданий по мобильной робототехнике,
	теоретического аппарата;	включая приемы ориентации и
	Применять основные навыки при	
	конструировании типовых	оборудование
	алгоритмов управления мобильным	Собрудовини
	роботом	
ПК 5.2	1	
11K 3.2	Умение по наладке и сдаче в	
	эксплуатацию мобильного робота	TI
ПК 5.3		Интегрирование разработанной
		системы управления в базовый блок
		управления мобильным роботом
ПК 5.4		Основные понятия и концепции
		методов робототехники в динамике
		мобильных роботов, важнейшие
		теоремы теории методов
		робототехники и их следствия,
		порядок применения теории методов
		робототехники в важнейших
		практических приложениях
ПК 5.5	Интериторанна жебум жиза	приктических приложениях
11K 3.3	Интегрирование любых типов	
	приводов и датчиков	

2. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

2.1. Объем учебной дисциплины и виды учебной работы

Вид учебной работы	Объем часов
Объем учебной дисциплины	58
в том числе:	I
теоретическое обучение	16
практические занятия (если предусмотрено)	24
лабораторные работы (если предусмотрено)	-
контрольная работа (если предусмотрено)	-
Промежуточная аттестация проводится в форме курсовое проектирование	

2.2. Тематический план и содержание учебной дисциплины

Наименование разделов и тем	Содержание учебного материала и формы организации деятельности обучающихся	Объем часов	Осваиваемые элементы компетенций
1	2	3	4
Введение	Содержание учебного материала 1. Роль, задачи и содержание дисциплины, связь ее с другими специальными дисциплинами. Значение автоматического управления в развитии автоматизации технологических процессов и производств. Краткий обзор истории развития теории автоматического управления от элементов автоматики, управления и регулирования до методов анализа и синтеза систем управления. Вклад русских ученых в развитие теории автоматического регулирования.	1	ПК 3.3
Page 1 Carryon and	2. Перспективы развития автоматизации технологических процессов и производств, совершенствования систем регулирования и управления технологическими процессами с точки зрения экономического и социального развития страны.		ПК 3.3
	мика элементов систем автоматического управления		
Тема 1.1 Основные понятия о САУ	Содержание учебного материала 1. Основные определения: параметры технологического процесса, виды управления регулирование, стабилизация; входная и выходная величина, начальная информация, регулируемые параметры, управление по заданию, регулирующие воздействия, возмущающие воздействия, их виды.	1	ПК 1.2, ПК 3.3
	2. Понятие о системе автоматического управления (САУ): структурная схема простейшей и реальной системы, назначение и выполняемые функции элементов системы. Замкнутые и разомкнутые, одноконтурные и многоконтурные системы.		ПК 1.2, ПК 3.3, ПК 5.2, ПК 5.5
 3. Классификация САУ. Непрерывные и дискретные, экстремальные и самонастраивающиеся, оптимальные системы, системы связанного и несвязанного регулирования. Методы линеаризации нелинейных систем. 4. Виды систем управления промышленным оборудованием. Разделение систем по функциональному 			ПК 1.2, ПК 3.3, ПК 5.2, ПК 5.5 ПК 1.2, ПК 3.3, ПК 5.2, ПК 5.5
	назначению. Требования, предъявляемые к САУ. Практические занятия	4	11K 3.2, 11K 3.3
	1. Составление структурной схемы по принципиальной.	•	ПК 1.2, ПК 5.2, ПК 5.5
	2. Изучение структурных схем АСР и назначение элементов, входящих в них.		ПК 1.2, ПК 5.2, ПК 5.5
Тема 1.2 Типовые			
элементарные звенья, свойства и характеристики звеньев и систем	рные звенья, 1. Дифференциальные уравнения элементов систем управления. Преобразование Лапласа и его применение для решения дифференциальных уравнений. Полное уравнение динамики системы управления. Передаточная функция системы. Динамические характеристики систем автоматизированного управления.		ПК 1.2, ПК 3.3

	2. Принципы расчленения систем автоматического управления на элементарные звенья. Характеристики		ПК 1.2, ПК 3.3
	элементарных звеньев.		
	3. Понятие о записи дифференциальных уравнений системы в операторной форме, действия с операторами.		ПК 1.2, ПК 3.3
	Понятие о характеристическом уравнении. Передаточная функция звена (системы). Получение		, , , , , , , , , , , , , , , , , , , ,
	аналитического выражения амплитудно – фазовой характеристики (АФХ) из передаточной функции. Запись		
	аналитического выражения АФХ в комплексно-показательной форме. Графическое изображение АФХ.		
	Геометрические методы построения АФХ. Методика проведения и анализа эксперимента по определению		
	частотных характеристик системы. Понятие о годографе. Типовые элементарные звенья: усилительное,		
	апериодические, колебательное, интегрирующие, дифференцирующие и чистого запаздывания.		
	Дифференциальное уравнение, переходная и передаточная функция, частотные характеристики и годограф		
	звена. Примеры элементарных звеньев, составляющих автоматические системы регулирования и управления.		
	Практические занятия	8	
	1. Решение дифференциальных уравнений с использованием преобразования Лапласа. Получение		ПК 1.2, ПК 3.3
	передаточной функции по дифференциальному уравнению.		<u> </u>
	2. Получение и построение частотных характеристик.		ПК 1.2, ПК 3.3
	3. Исследование типовых элементарных звеньев.		ПК 1.2, ПК 3.3,
	· · · · · · · · · · · · · · · · · · ·		ПК 5.4
	4. Построение временных динамических характеристик.		
	5. Построение КЧХ системы, в состав которой входит запаздывающие звено.		ПК 1.2, ПК 3.3
Тема 1.3 Передаточные	Содержание учебного материала	1	
функции соединений	1. Виды соединений звеньев: последовательное, параллельное, встречнопараллельное. Передаточные		ПК 3.3, ПК 5.1
звеньев и систем	функции соединений звеньев. Понятие об обратной связи. Положительная и отрицательная обратная связь.		
	Гибкая и жесткая обратная связь.		
	2. Замена нескольких звеньев одним эквивалентным звеном, эквивалентные преобразования структурных		ПК 3.3, ПК 5.5
	схем систем, передаточная функция сложных многоконтурных систем, приведение многоконтурной системы		
	к одноконтурной.		
	Практические занятия	2	ПК 3.3, ПК 5.5
	1. Эквивалентные преобразования структурных схем.		
Тема 1.4 Свойства	Содержание учебного материала	2	
объектов управления с	1. Свойства объектов регулирования, объект регулирования как важнейшая составная часть автоматической		ПК 1.2, ПК 4.3
сосредоточенными	системы регулирования. Элементы, входящие в состав ОУ. Статические и динамические свойства ОУ.		
параметрами и их	Статические и динамические ОУ. Кривая разгона объектов управления, параметры кривой разгона:		
определения	постоянная времени, полное время запаздывания, коэффициент передачи, отношение т/Т.		
	2. Понятие о нагрузке, емкости и самовыравнивании. Объекты управления с самовыравниванием и		ПК 1.2, ПК 4.3
	астатические объекты. Их характеристики.		
	3. Определение динамических характеристик объектов управления экспериментальным путем и с помощью		ПК 1.2, ПК 4.3
	моделирования на ЭВМ. Представление ОУ и устройств автоматического управления с сосредоточенными		
	параметрами в виде передаточных функций.		
	Практические занятия	4	

	1. Определения параметров объектов управления по кривой разгона.		ПК 1.2
	2. Изучение статических и астатических объектов управления.		
Тема 1.5 Управляющие	Содержание учебного материала	1	
устройства	1. Линейные законы управления: пропорциональный (П-управление), интегральный (И-управление), пропорционально-интегральный (ПИ-управление), пропорционально-дифференциальный (ПД-управление), пропорционально-интегрально-дифференциальный (ПИД-управление) и управляющие устройства (регуляторы), реализующие эти законы: П-, И-, ПИ-, ПИД-, ПИД-регуляторы.	1	ПК 1.2, ПК 4.3
	2. Дифференциальные уравнения, описывающие линейные законы управления. Структурная схема идеального и реального регуляторов. Передаточные функции и частотные характеристики идеальных и реальных регуляторов.		ПК 1.2, ПК 4.3
	3. Влияние параметров настроек регулятора на получение законов регулирования. Структурное представление П-, И-, ПИ-, ПИ-, ПИД- регуляторов. Исследование их на ЭВМ.		ПК 1.2, ПК 3.3, ПК 4.3
	4. Основные элементы, с помощью которых формируются соответствующие законы управления: преобразующие элементы, исполнительные механизмы (ИМ) и корректирующие обратные связи. Реализация законов управления с помощью охвата отрицательной обратной связью. Обратная связь по положению ИМ и внутренняя ОС. Структурные схемы реализации законов управления. Расчет оптимальных настроек. Моделирование на ЭВМ.		ПК 1.2, ПК 3.3, ПК 4.2, ПК 4.3
	Практические занятия	2	
1. Исследование идеальных и реальных регуляторов.			ПК 1.2, ПК 4.3
Раздел 2. Линейные авто	оматические системы управления		
Тема 2.1 Передаточные	Содержание учебного материала	1	
функции замкнутых систем	1. Исследование динамических процессов, происходящих в системах автоматического управления при приложении к системе воздействий произвольной формы. Воздействия управляющие и возмущающие. Передаточные функции замкнутых и разомкнутых систем. Структурные схемы.		ПК 1.2, ПК 4.2
	2. Передаточные функции замкнутых систем управления по каналу управления (возмущение со стороны регулирующего органа), по внешнему возмущению и по возмущению по заданию.		ПК 1.2, ПК 4.2
	3. Получение характеристического уравнения замкнутой системы регулирования по передаточной функции разомкнутой системы. Правила эквивалентного преобразования для получения передаточных функций сложных систем с различными перекрестными связями: правило переноса точки съёма сигнала и точки суммирования сигналов и др. Структурные схемы, передаточные функции. Примеры преобразования сложных систем управления.		ПК 1.2, ПК 4.2
	Самостоятельная работа обучающихся	1	ПК 1.2, 5.3, ПК 5.5
	Разбор примеров преобразования сложных систем управления		
Тема 2.2 Устойчивость	Содержание учебного материала	1	
систем автоматического управления	1. Понятие об устойчивости линейных систем регулирования и анализ устойчивости линейных систем методом Ляпунова. Определение устойчивости систем по знаку вещественной части корней характеристического уравнения систем и расположению корней характеристического уравнения в		ПК 1.2, ПК 1.3, ПК 4.3
) F	комплексной плоскости. Граница устойчивости. Необходимые и достаточные условия устойчивости системы регулирования.		

		1	
	2. Критерии устойчивости. Критерий устойчивости Михайлова. Годограф Михайлова и его особенности.		ПК 1.2, ПК 1.3,
	Критерий устойчивости Найквиста. Комплексные частотные характеристики устойчивых и неустойчивых		ПК 4.3
	систем. Понятие о запасе устойчивости. Построение областей устойчивости. Анализ устойчивости		
	одноконтурных и многоконтурных систем автоматического управления.		
	Практические занятия	2	
	1. Расчет устойчивости САУ различными методами.		ПК 1.2, ПК 1.3, ПК 4.3
	2. Определение областей устойчивости САУ.		ПК 1.2, ПК 1.3, ПК 4.3
	Самостоятельная работа обучающихся	1	ПК 1.2, ПК 1.3,
	Оценка устойчивости различными критериями	1	ПК 4.3
Тема 2.3 Качество	Содержание учебного материала	1	
систем	1. Основные показатели, определяющие качество процесса регулирования: статическая и динамическая		ПК 3.3, ПК 5.3
автоматического	ошибки, максимальное динамическое отклонение, время регулирования, величина перерегулирования,		
управления	колебательность и др.		
	2. Типовые переходные процессы регулирования: апериодический, с 20% перерегулированием и др.		ПК 3.3, ПК 5.3
	Построение переходных процессов по заданным передаточным функциям замкнутых систем.		
	3. Оценка качества регулирования по корням характеристического уравнения. Степень устойчивости и		ПК 3.3, ПК 5.3
	степень колебательности: Интегральные оценки качества.		
	4. Частотные характеристики и их связь с характеристиками переходных процессов. Частотные методы		ПК 4.3
	анализа качества процесса регулирования: по вещественной частотной характеристике замкнутой системы,		
	построение переходного процесса с помощью трапецеидальных характеристик.		
	Самостоятельная работа обучающихся	1	ПК 3.3
	Анализ типовых переходных процессов регулирования	1	
Тема 2.4 Коррекция	Содержание учебного материала	1	ПК 3.3
линейных систем	1. Основные меры, применяемые для улучшения процессов управления. Введение корректирующих звеньев		ПК 3.3, ПК 4.3,
автоматического	и их влияние на точность и качество регулирования. Последовательная и параллельная коррекция, ОС; их		ПК 5.3, ПК 5.4
управления	особенности и области применения.		
	2. Передаточные функции соединений звеньев при введении корректирующих устройств. Активные и		ПК 3.3, ПК 4.3,
	пассивные корректирующие звенья. Примеры корректирующих звеньев: интегрирующие,		ПК 5.3, ПК 5.4
	дифференцирующие, интегро-дифференцирующие, варианты их включения. Корректирующие обратные		
	связи (отрицательные и положительные) и их применение. Методика расчета параметров корректирующих		
	звеньев.		
	3. Введение дополнительных контуров. Особенности применения дополнительных контуров для улучшения		ПК 3.3, ПК 4.3,
	качеств регулирования при больших возмущениях. Понятия об инвариантных системах.		ПК 5.3, ПК 5.4
j	Самостоятельная работа обучающихся	,	ПК 3.3, ПК 4.3
	Расчет параметров корректирующих звеньев	1	ŕ
Раздел 3. Дискретные СА	1 1 11 14		
	Содержание учебного материала	1	
	··· I ··· ·· ·· ·· ·· ·· ·· ·· ·· ·· ··	·	L

Тема 3.1 Основные понятия и определения	1. Основные определения. Классификация дискретных систем управления. Импульсные элементы 1, 2 и 3 видов. Виды сигналов при различных формах импульсной модуляции. Структурная схема дискретной системы. Понятие о дискретном преобразовании Лапласа и математические основы теории дискретных систем. Решетчатые функции их изображения.		ПК 1.2, ПК 1.3
дискретных САУ	Самостоятельная работа обучающихся Изучение различных форм модуляции сигналов.	1	ПК 1.2, ПК 1.3
Тема 3.2 Анализ	Содержание учебного материала	3	
дискретных САУ	1. Уравнения дискретных систем управления. Применение принципа суперпозиции для исследования дискретной системы управления. Расчленение на дискретную и линейную части системы автоматического управления. Определение временной и частотной характеристик линейной части при воздействии на нее последовательности импульсов.	J	ПК 1.2, ПК 1.3, ПК 5.1
	2. Передаточные функции замкнутых и разомкнутых дискретных систем. Определение передаточной функции разомкнутой системы через передаточную функцию линейной части. Методы анализа устойчивости линейных систем и их аналоги для дискретных систем автоматического регулирования.		ПК 1.2, ПК 1.3
	3. Определение устойчивости по расположению корней характеристического уравнения. Частотные методы определения устойчивости дискретных систем. Аналоги критериев Михайлова и Найквиста.		ПК 1.2, ПК 1.3
	4. Понятие о качестве переходных процессов дискретных САУ. Определение качества переходных процессов с использованием методов косвенной оценки. Определение по степени устойчивости и с помощью интегральной оценки. Понятие о коррекции дискретных систем автоматического управления.		ПК 1.2, ПК 1.3, ПК 4.3, ПК 5.3.
	1. Анализ дискретных САУ.		ПК 1.2, ПК 1.3 ПК 4.3, ПК 5.3.
	Самостоятельная работа обучающихся		
	Анализ устойчивости частотными методами.	1	
	Анализ качества переходных процессов	50	
Всего:		58	

3. УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ

3.1. Реализация программы учебной дисциплины предусматривает наличие следующих специальных помещений:

Учебный кабинет «Вычислительная техника»; лаборатория «Электронной и вычислительной техники»:

- посадочные места по количеству обучающихся,
- рабочее место преподавателя,
- комплект учебно-наглядных пособий «Вычислительная техника»;
- комплект учебно-наглядных пособий «Электроника»;
- комплект плакатов на тему «Функциональные схемы цифровых устройств»;
- учебная установка РТМТЛ-1 «Знакомство с основами работы с программируемыми микроконтроллерами»;
- учебная установка РТМТЛ-5 «Согласование микропроцессоров с персональным компьютером»;
- технические средства обучения: компьютер, проектор, экран, колонки, компьютерные программы Multisim (не ранее 12 версии), PSPICE, Electronics Workbench (не ранее 10 версии), MatLab (не ранее 7 версии).

Оборудование лаборатории и рабочих мест лаборатории:

- рабочие места по количеству обучающихся;
- рабочее место преподавателя, оснащённое компьютером;
- комплекты микросхем по количеству обучающихся;
- программатор;
- учебный лабораторный стенд LESO2 на базе ПЛИС структуры FPGA;
- лабораторный комплекс «Цифровая электроника» типа ЦЭ-НР, типа ЦЭ-НК;
 - установка для изучения логических схем УМ-11М;
 - учебный микропроцессорный комплекс УМПК-51;
 - учебный микропроцессорный комплекс УМПК-80;
 - учебный микропроцессорный комплекс УМПК-48;
 - лаборатория цифровой электроники НС-6225;
 - лаборатория по проектированию цифровых устройств НС-6228;
 - учебная установка РТЦУЛ-11 «Изучение RS-триггеров»;
- технические средства обучения: компьютеры с лицензионным программным обеспечением по количеству обучающихся; компьютерные

программы Multisim (не ранее 12 версии), PSPICE, Electronics Workbench (не ранее 10 версии), MatLab (не ранее 7 версии).

3.2. Информационное обеспечение реализации программы

Для реализации программы библиотечный фонд образовательной организации должен иметь печатные и/или электронные образовательные и информационные ресурсы, рекомендуемых для использования в образовательном процессе.

3.2.1. Печатные издания

- 1. Автоматическое управление : учеб. пособие / А. М. Петрова. М. : Φ ОРУМ, 2017. 240 с.
- 2. Федотов А.В. Основы теории автоматического управления: Учебное пособие. Омск: Изд-во ОмГТУ, 2012. 279 с.
- 3. Автоматическое управление. Курс лекций с решением задач и лабораторных работ : учеб. пособие / Н.П. Молоканова. 2017. 224 с.
- 4. Ротач В.Я. Теория автоматического управления. М.: МЭИ, 2012.
- 5. Автоматизация производственных процессов в машиностроении : учеб. пособие / Е.Э. Фельдштейн, М.А. Корниевич. Минск : Новое знание ; М. : ИНФРА-М, 2017. 264 с.

4. КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Контроль и оценка результатов освоения дисциплины осуществляется преподавателем в процессе проведения практических занятий, тестирования, а также выполнения обучающимися индивидуальных заданий, проектов, исследований.

Результаты обучения	Критерии оценки	Формы и методы
		оценки
умение настраивать и	Точность настройки и	Экспертная оценка
конфигурировать ПЛК в	конфигурации ПЛК в	результатов
соответствии с	соответствии с	деятельности студентов
принципиальными схемами	принципиальными	при выполнении и
подключения	схемами подключения	защите практических
		работ
умение читать принципиальные	Точность и скорость	Экспертная оценка
структурные схемы, схемы	чтения принципиальных	результатов
автоматизации, схемы	структурных схем, схем	деятельности студентов
соединений и подключений;	автоматизации, схемы	при выполнении и
	соединений и	защите практических
	подключений	работ
умение разрабатывать	Скорость и техничность	Экспертная оценка
алгоритмы управления	при разработке	результатов
мехатронными системами;	алгоритмов управления	деятельности студентов
	мехатронными системами	при выполнении и
		защите практических
		работ
умение проводить отладку	Точность и скорость	Экспертная оценка
программ управления	проведения отладки	результатов
мехатронными системами и	программ управления	деятельности студентов
визуализации процессов	мехатронными системами	при выполнении и
управления и работы	и визуализации процессов	защите практических
мехатронных систем;	управления и работы	работ
	мехатронных систем	
умение выбирать наиболее	Правильность выбора	Экспертная оценка
оптимальные модели	наиболее оптимальной	результатов
управления мехатронными	модели управления	деятельности студентов
системами;	мехатронными системами	при выполнении и

		защите практических работ
умение оптимизировать работу мехатронных систем по различным параметрам;	Точность оптимизации работы мехатронных систем по различным параметрам	Экспертная оценка результатов деятельности студентов при выполнении и защите практических работ
осуществлять настройку датчиков различного типа при проектировании мобильных роботов;	Точность и скорость при настройке датчиков различного типа при проектировании мобильных роботов	Экспертная оценка результатов деятельности студентов при выполнении и защите практических работ
умение интерпретировать навыки построения проектной документации мобильного робота при помощи соответствующего теоретического аппарата;	Точность (правильность) построения электрических схем при помощи соответствующего теоретического аппарата	Экспертная оценка результатов деятельности студентов при выполнении и защите практических работ
умение применять основные навыки при конструировании типовых алгоритмов управления мобильным роботом;	Результативность применения основных навыков при конструировании типовых алгоритмов управления мобильным роботом	Экспертная оценка результатов деятельности студентов при выполнении и защите практических работ
умение интегрировать любые типы приводов и датчиков.	Результативность интеграции любых типов приводов и датчиков	Экспертная оценка результатов деятельности студентов при выполнении и защите практических работ
знание языков программирования и интерфейсы ПЛК;	Применение языков программирования и интерфейсы ПЛК	Экспертная оценка результатов деятельности студентов при тестировании, внеаудиторной самостоятельной работы и других видов текущего контроля

знание технологий разработки алгоритмов управляющих программ ПЛК;	Соблюдение технологии разработки алгоритмов управляющих программ ПЛК	Экспертная оценка результатов деятельности студентов при тестировании, внеаудиторной самостоятельной работы и других видов текущего контроля
знание основ автоматического управления;	Применение основ автоматического управления	Экспертная оценка результатов деятельности студентов при тестировании, внеаудиторной самостоятельной работы и других видов текущего контроля
знание методов отладки программ управления ПЛК;	Правильный выбор и применение методов отладки программ управления ПЛК	Экспертная оценка результатов деятельности студентов при тестировании, внеаудиторной самостоятельной работы и других видов текущего контроля
знание методов оптимизации работы компонентов и модулей мехатронных систем;	Правильный выбор и применение методов оптимизации работы компонентов и модулей мехатронных систем	Экспертная оценка результатов деятельности студентов при тестировании, внеаудиторной самостоятельной работы и других видов текущего контроля
знание решаемых задач, областей применения, обобщенного состава и классификации мобильных роботов;	Правильный выбор и применение решаемых задач, областей применения, обобщенного состава и классификации мобильных роботов	Экспертная оценка результатов деятельности студентов при тестировании, внеаудиторной самостоятельной работы и других видов текущего контроля

знание особенностей управления мобильными роботами, устройства управления роботом;	Соблюдение особенностей управления мобильными роботами, устройства управления роботом	Экспертная оценка результатов деятельности студентов при тестировании, внеаудиторной самостоятельной работы и других видов текущего контроля
знание загрузки, установки и выполнения всех требуемых физических и программных настроек, необходимых для эффективного использования всего оборудования, поставляемого производителями;	Соблюдение принципов загрузки, установки и выполнения всех требуемых физических и программных настроек, необходимых для эффективного использования всего оборудования, поставляемого производителями	Экспертная оценка результатов деятельности студентов при тестировании, внеаудиторной самостоятельной работы и других видов текущего контроля
знание определения конкретных блоков аппаратного обеспечения (различные датчики и т.п.), необходимых для обеспечения функционирования робота;	Применение правил определения конкретных блоков аппаратного обеспечения (различные датчики и т.п.), необходимых для обеспечения функционирования робота	Экспертная оценка результатов деятельности студентов при тестировании, внеаудиторной самостоятельной работы и других видов текущего контроля
знание интегрирования датчиков в свою дополнительную конструкцию (прототип) и для управления ходом выполнения поставленной задачи;	Применение принципов интегрирования датчиков в свою дополнительную конструкцию (прототип) и для управления ходом выполнения поставленной задачи	Экспертная оценка результатов деятельности студентов при тестировании, внеаудиторной самостоятельной работы и других видов текущего контроля
знание основных методов проектирования мобильных роботов;	Правильный выбор и применение основных методов проектирования мобильных роботов	Экспертная оценка результатов деятельности студентов при тестировании, внеаудиторной самостоятельной работы

знание разработки стратегии выполнения заданий по	Правильный выбор и применение разработки	и других видов текущего контроля Экспертная оценка результатов
мобильной робототехнике, включая приемы ориентации и навигации, используя	стратегии выполнения заданий по мобильной робототехнике, включая	деятельности студентов при тестировании, внеаудиторной
предложенное оборудование;	приемы ориентации и навигации, используя предложенное оборудование	самостоятельной работы и других видов текущего контроля
знание интегрирования разработанной системы управления в базовом блоке управления мобильным роботом;	Применение принципов интегрирования разработанной системы управления в базовом блоке управления мобильным роботом	Экспертная оценка результатов деятельности студентов при тестировании, внеаудиторной самостоятельной работы и других видов текущего контроля
знание основных понятий и концепций методов робототехники в динамике мобильных роботов, важнейших теорем теории методов робототехники и их следствия, порядка применения теории методов робототехники в важнейших практических приложениях.	Правильный выбор и применениеосновных понятий и концепций методов робототехники в динамике мобильных роботов, важнейших теорем теории методов робототехники и их следствия, порядка применения теории методов робототехники в важнейших практических приложениях	Экспертная оценка результатов деятельности студентов при тестировании, внеаудиторной самостоятельной работы и других видов текущего контроля