Муниципальное бюджетное дошкольное образовательное учреждение Детский сад общеразвивающего вида с приоритетным осуществлением деятельности по познавательно-речевому направлению развития детей №90 «Елочка»

УТВЕРЖДАЮ
Заведующий МБДОУ №90 «Елочка»
С. Ф. Алборова
от «ДА» С. 20 ДГ.

ПРОГРАММА ДОПОЛНИТЕЛЬНОГО ОБРАЗОВАНИЯ по робототехнике «МЕГALEGO»

Составитель: Мельникова Надежда Петровна

Набережные Челны

І. ЦЕЛЕВОЙ РАЗДЕЛ	
1.Пояснительная записка	3
1.1. Цель, задачи программы	
1.2. Принципы и подходы к формированию программы	
1.3. Предполагаемые результаты реализации программы	
ІІ. СОДЕРЖАТЕЛЬНЫЙ РАЗДЕЛ	
2.1.Содержание деятельности по образовательным областям	10
2.2. Формы, способы, методы и средства реализации программы	12
2.3. Способы и направления поддержки детской инициативы	15
Ш. ОРГАНИЗАЦИОННЫЙ РАЗДЕЛ	
3.1. Особенности организации совместной и самостоятельной	
деятельности	17
3.2. Материально – техническое обеспечение	
3.3. Методическое обеспечение	
Приложение №1	
•	

Современные дети живут в эпоху активной информатизации, компьютеризации и роботостроения. Технические достижения всё быстрее проникают во все сферы человеческой жизнедеятельности и вызывают интерес детей к современной технике. Технические объекты окружают нас повсеместно, в виде бытовых приборов и аппаратов, игрушек, транспортных, строительных и других машин. Детям с раннего возраста интересны двигательные игрушки. В дошкольном возрасте они пытаются понимать, как это устроено. Благодаря разработкам компании LEGO System на современном этапе появилась возможность уже в дошкольном возрасте знакомить детей с основами строения технических объектов. Однако в дошкольном образовании опыт системной работы по развитию технического творчества дошкольников посредством использования робототехники отсутствует.

Актуальность программы заключается в следующем:

-востребованность развития широкого кругозора старшего дошкольника, в том числе в естественнонаучном направлении;

-отсутствие методического обеспечения формирования основ технического творчества, навыков начального программирования;

-необходимость ранней научно — технической профессиональной ориентации в связи с особенностями градообразующих предприятий города Набережные Челны: внедрение наукоёмких технологий, автоматизация производства, недостаток квалифицированных специалистов. Программа отвечает требованиям направления муниципальной и региональной политики в сфере образования - развитие основ технического творчества детей в условиях модернизации образования.

Новизна программы заключается в исследовательско-технической направленности обучения, которое базируется на новых информационных технологиях, что способствует развитию информационной культуры и взаимодействию с миром технического творчества. Авторское воплощение замысла в автоматизированные модели и проекты особенно важно для старших дошкольников, у которых наиболее выражена исследовательская (творческая) деятельность.

Детское творчество - одна из форм самостоятельной деятельности ребёнка, в процессе которой он отступает от привычных и знакомых ему способов проявления окружающего мира, экспериментирует и создаёт нечто новое для себя и других.

Техническое детское творчество является одним из важных способов формирования профессиональной ориентации детей, способствует развитию устойчивого интереса к технике и науке, а также стимулирует рационализаторские и изобретательские способности.

1.1.Цель, задачи программы

Цель программы – развитие технического творчества и формирование научно – технической профессиональной ориентации у детей дошкольного возраста средствами робототехники.

Задачи:

- формировать первичные представления о робототехнике, ее значении в жизни человека, о профессиях связанных с изобретением и производством технических средств;
- приобщать к научно техническому творчеству: развивать умение постановки технической задачи, собирать и изучать нужную информацию, находить конкретное решение задачи и материально осуществлять свой творческий замысел;
- развивать продуктивную (конструирование) деятельность: обеспечить освоение детьми основных приёмов сборки и программирования робототехнических средств, составлять таблицы для отображения и анализа данных;
- формировать основы безопасности собственной жизнедеятельности и окружающего мира: формировать представление о правилах безопасного поведения при работе с электротехникой, инструментами, необходимыми при конструировании робототехнических моделей

- воспитывать ценностное отношение к собственному труду, труду других людей и его результатам;
- формировать навыки сотрудничества: работа в коллективе, в команде, малой группе (в паре).

1.2. Принципы и подходы к формированию программы Программа основывается на следующих принципах:

- 1) обогащение детского развития;
- 2) построение образовательной деятельности на основе индивидуальных особенностей каждого ребенка, при котором сам ребенок становится активным в выборе содержания своего образования, становится субъектом образования (далее индивидуализация дошкольного образования);
- 3) содействие и сотрудничество детей и взрослых, признание ребенка полноценным участником (субъектом) образовательных отношений;
 - 4) поддержка инициативы детей в продуктивной творческой деятельности;
- 6) приобщение детей к социокультурным нормам, традициям семьи, общества и государства;
- 7) формирование познавательных интересов и познавательных действий ребенка в продуктивной творческой деятельности;
- 8) возрастная адекватность дошкольного образования (соответствие условий, требований, методов возрасту и особенностям развития).

Характеристики особенности развития технического детского творчества

Техническое детское творчество — это конструирование приборов, моделей, механизмов и других технических объектов. Процесс технического детского творчества условно делят на 4 этапа:

- 1. постановка технической задачи
- 2. сбор и изучение нужной информации
- 3. поиск конкретного решения задачи
- 4. материальное осуществление творческого замысла
- В дошкольном возрасте техническое детское творчество сводится к моделированию простейших механизмов.

Детское творчество и личность ребёнка

Детское творчество, как один из способов интеллектуального и эмоционального развития ребёнка, имеет сложный механизм творческого воображения, делится на несколько этапов и оказывает существенное влияние на формирование личности ребёнка.

Механизм творческого воображения

Процесс детского творчества делится на следующие этапы: накопление и сбор информации, обработка накопленных данных, систематизирование и конечный результат. Подготовительный этап включает в себя внутреннее и внешнее восприятие ребёнка окружающего мира. В процессе обработки ребёнок распределяет информацию на части, выделяет преимущества, сравнивает, систематизирует и на основе умозаключений создаёт нечто новое.

Работа механизма творческого воображения зависит от нескольких факторов, которые принимают различный вид в разные возрастные периоды развития ребёнка: накопленный опыт, среда обитания и его интересы. Существует мнение, что воображение у детей намного богаче, чем у взрослых, и по мере того, как ребёнок развивается, его фантазия уменьшается. Однако, жизненный опыт ребёнка, его интересы и отношения с окружающей средой элементарней и не имеют той тонкости и сложности, как у взрослого человека, поэтому воображение у детей беднее, чем у взрослых. Согласно работе французского психолога Т. Рибо, ребёнок проходит три стадии развития воображения:

- 1. Детство. Представляет собой период фантазии, сказок, вымыслов.
- 2. Юность. Сочетает осознанную деятельность и вымысел.
- 3. Зрелость. Воображение находится под контролем интеллекта.

Воображение ребёнка развивается по мере его взросления и приближения к зрелости. Л. С. Выготский считал, что между половым созреванием и развитием воображения у детей существует тесная связь.

Механизм творческого воображения детей зависит от факторов, влияющих на формирование «Я»: возраст, особенности умственного развития (возможные нарушения в психическом и физическом развитии), индивидуальность ребёнка (коммуникации, самореализация, социальная оценка его деятельности, темперамент и характер), воспитание и обучение.

Этапы детского творчества

В творческой деятельности ребёнка выделяют три основных этапа:

- 1. Формирование замысла. На этом этапе у ребёнка возникает идея (самостоятельная или предложенная родителем/воспитателем) создания чего-то нового. Чем младше ребёнок, тем больше значение имеет влияние взрослого на процесс его творчества. В младшем возрасте только в 30 % случаев, дети способны реализовать свою задумку, в остальных первоначальный замысел претерпевает изменения по причине неустойчивости желаний. Чем старше становится ребёнок, тем больший опыт творческой деятельности он приобретает и учится воплощать изначальную задумку в реальность.
- 2. Реализация замысла. Используя воображение, опыт и различные инструменты, ребёнок приступает к осуществлению идеи. Этот этап требует от ребёнка умения владеть выразительными средствами и различными способами творчества (рисунок, аппликация, поделка, механизм, пение, ритмика, музыка).
- 3. Анализ творческой работы. Является логическим завершением первых этапов. После окончания работы, ребёнок анализирует получившийся результат, привлекая к этому взрослых и сверстников.

Влияние детского творчества на развитие личности ребёнка

Важной особенностью детского творчества является то, что основное внимание уделяется самому процессу, а не его результату. То есть важна сама творческая деятельность и создание чего-то нового. Вопрос ценности созданной ребёнком модели отступает на второй план. Однако дети испытывают большой душевный подъём, если взрослые отмечают оригинальность и самобытность творческой работы ребёнка. Детское творчество неразрывно связано с игрой, и, порой, между процессом творчества и игрой нет границы. Творчество является обязательным элементом гармоничного развития личности ребёнка, в младшем возрасте необходимое, в первую очередь, для саморазвития. По мере взросления, творчество может стать основной деятельностью ребёнка.

1.3. Планируемые результаты реализации программы

- ребенок овладевает робото-конструированием, проявляет инициативу и самостоятельность в среде программирования LEGO WeDo , общении, познавательно-исследовательской и технической деятельности;
- ребенок способен выбирать технические решения, участников команды, малой группы (в пары);
- ребенок обладает установкой положительного отношения к роботоконструированию, к разным видам технического труда, другим людям и самому себе, обладает чувством собственного достоинства;
- ребенок активно взаимодействует со сверстниками и взрослыми, участвует в совместном конструировании, техническом творчестве имеет навыки работы с различными источниками информации;
- ребенок способен договариваться, учитывать интересы и чувства других, сопереживать неудачам и радоваться успехам других, адекватно проявляет свои чувства, в том числе чувство веры в себя, старается разрешать конфликты;
- ребенок обладает развитым воображением, которое реализуется в разных видах исследовательской и творческо-технической деятельности, в строительной игре и

конструировании; по разработанной схеме с помощью педагога, запускает программы на компьютере для различных роботов;

- ребенок владеет разными формами и видами творческо-технической игры, знаком с основными компонентами конструктора LEGO WeDo; видами подвижных и неподвижных соединений в конструкторе, основными понятиями, применяемые в робототехнике различает условную и реальную ситуации, умеет подчиняться разным правилам и социальным нормам;
- ребенок достаточно хорошо владеет устной речью, способен объяснить техническое решение, может использовать речь для выражения своих мыслей, чувств и желаний, построения речевого высказывания в ситуации творческо-технической и исследовательской деятельности;
- у ребенка развита крупная и мелкая моторика, он может контролировать свои движения и управлять ими при работе с Lego-конструктором;
- ребенок способен к волевым усилиям при решении технических задач, может следовать социальным нормам поведения и правилам в техническом соревновании, в отношениях со взрослыми и сверстниками;
- ребенок может соблюдать правила безопасного поведения при работе с электротехникой, инструментами, необходимыми при конструировании робототехнических моделей;
- ребенок проявляет интерес к исследовательской и творческо-технической деятельности, задает вопросы взрослым и сверстникам, интересуется причинно-следственными связями, пытается самостоятельно придумывать объяснения технические задачи; склонен наблюдать, экспериментировать;
- ребенок обладает начальными знаниями и элементарными представлениями о робототехнике, знает компьютерную среду, включающую в себя графический язык программирования, создает действующие модели роботов на основе конструктора LEGO WeDo по разработанной схеме; демонстрирует технические возможности роботов, создает программы на компьютере для различных роботов с помощью педагога и запускает их самостоятельно;
- ребенок способен к принятию собственных творческо-технических решений, опираясь на свои знания и умения, самостоятельно создает авторские модели роботов на основе конструктора LEGO WeDo; создает и запускает программы на компьютере для различных роботов самостоятельно, умеет корректировать программы и конструкции.

II. Содержательный раздел2.1. Содержание деятельности по образовательным областям

Содержание программы обеспечивает развитие личности, мотивации и способностей детей, охватывая следующие направления развития (образовательные области):

Познавательное развитие.

Изучение процесса передачи движения и преобразования энергии в машине. Идентификация простых механизмов, работающих в модели, включая рычаги, зубчатые и ременные передачи. Ознакомление с более сложными типами движения, использующими кулачок, червячное и коронное зубчатые колеса. Понимание того, что трение влияет на движение модели. Понимание и обсуждение критериев испытаний. Понимание потребностей живых существ.

Создание и программирование действующих моделей. Интерпретация двухмерных и трехмерных иллюстраций и моделей. Понимание того, что животные используют различные части своих тел в качестве инструментов. Сравнение природных и искусственных систем. Использование программного обеспечения для обработки информации. Демонстрация умения работать с цифровыми инструментами и технологическими системами.

Сборка, программирование и испытание моделей. Изменение поведения модели путём модификации её конструкции или посредством обратной связи при помощи датчиков.

Измерение времени в секундах с точностью до десятых долей. Оценка и измерение расстояния. Усвоение понятия случайного события. Связь между диаметром и скоростью вращения. Использование чисел для задания звуков и для задания продолжительности работы мотора. Установление взаимосвязи между расстоянием до объекта и показанием датчика расстояния. Установление взаимосвязи между положением модели и показаниями датчика наклона. Использование чисел при измерениях и при оценке качественных параметров.

Социально - коммуникативное развитие.

Организация мозговых штурмов для поиска новых решений. Обучение принципам совместной работы и обмена идеями, совместно обучаться в рамках одной группы. Подготовка и проведение демонстрации модели. Участие в групповой работе в качестве «мудреца», к которому обращаются со всеми вопросами. Становление самостоятельности: распределять обязанности в своей группе, проявлять творческий подход к решению поставленной задачи, создавать модели реальных объектов и процессов, видеть реальный результат своей работы.

Речевое развитие.

Общение в устной форме с использованием специальных терминов. Использование интервью, чтобы получить информацию и составить схему рассказа. Написание сценария с диалогами с помощью моделей. Описание логической последовательности событий, создание постановки с главными героями и её оформление визуальными и звуковыми эффектами при помощи моделирования. Применение мультимедийных технологий для генерирования и презентации идей.

2.2. Формы, способы методы и средства реализации программы Приемы и методы организации занятий.

I Методы организации и осуществления занятий

- 1. Перцептивный акцент:
- а) словесные методы (рассказ, беседа, инструктаж, чтение справочной литературы);
- б) наглядные методы (*демонстрации мультимедийных презентаций*, фотографии);
 - в) практические методы (упражнения, задачи).
 - 2. Гностический аспект:
 - а) иллюстративно- объяснительные методы;

- б) репродуктивные методы;
- в) проблемные методы (методы проблемного изложения) дается часть готового знания;
 - г) эвристические (частично-поисковые) большая возможность выбора вариантов;
 - д) исследовательские дети сами открывают и исследуют знания.
 - 3. Логический аспект:
 - а) индуктивные методы, дедуктивные методы, продуктивный;
- б) конкретные и абстрактные методы, синтез и анализ, сравнение, обобщение, абстрагирование, классификация, систематизация, т.е. методы как мыслительные операции.
 - 4. Управленческий аспект:
 - а) методы учебной работы под руководством учителя;
 - б) методы самостоятельной учебной работы учащихся.

Модули программы.

Зачем человеку роботы? (знакомство с робототехникой)

Основной предметной областью является познания в области естественно — научных представлений о роботах, их происхождении, предназначении и видах, правилах робототехники, особенностях конструирования. Дети знакомятся с краткой историей робототехники, знаменитыми людьми в этой области, различными видами робототехнической деятельности: конструирование, программирование, соревнования, подготовка видео обзора.

Модуль. Как научить робота двигаться? (основы программирования)

Основной предметной областью являются естественно — научные представления о приемах сборки и программирования. Этот модуль используется как справочный материал при работе с комплектом заданий. Он изучается и на отдельных занятиях, чтобы познакомить детей с основами построения механизмов и программирования. Дынный модуль формирует представления детей о взаимосвязи программирования и механизмов движения: - что происходит после запуска и остановки цикла программы? Как изменить значение входных параметров программы. Какие функции выполняет блоки программы.

Модуль «Забавные механизмы»

Основной предметной областью является естественно - научные представления. На занятиях дети знакомятся с ременными передачами, экспериментируют со шкивами разных размеров, прямыми и перекрёстными ременными передачами, исследуют влияние размеров зубчатых колёс на вращение волчка. Занятия посвящено изучению принципа действия рычагов и кулачков, а также знакомству с основными видами движения. Дети изменяют количество и положение кулачков, используя их для передачи усилия.

Модуль «Зоопарк»

Модуль раскрывает перед детьми понимание того, что система должна реагировать на свое окружение. На занятиях «Голодный аллигатор» дети программируют аллигатора, чтобы он закрывал пасть, когда датчик расстояния обнаруживает в ней «пищу». На занятии «Рычащий лев» ученики программируют льва, чтобы он сначала садился, затем ложился и рычал, учуяв косточку. На занятии «Порхающая птица» создается программа, включающая звук хлопающих крыльев, когда датчик наклона обнаруживает, что хвост птицы поднят или опущен. Кроме того, программа включает звук птичьего щебета, когда птица наклоняется, и датчик расстояния обнаруживает приближение земли.

Модуль «Человекоподобные роботы (андроиды)»

Модуль направлен на развитие математических способностей. На занятии «Нападающий» измеряют расстояние, на которое улетает бумажный мячик. На занятии «Вратарь» дети подсчитывают количество голов, промахов и отбитых мячей, создают программу автоматического ведения счета. На занятии «Ликующие болельщики» воспитанники используют числа для оценки качественных показателей, чтобы определить наилучший результат в трёх различных категориях. Большое внимание в программе

уделяется развитию творческой фантазии детей. Они уже конструируют не по готовому образцу, а по собственному воображению, иногда обращаясь к фотографии, чертежу. Нередко у детей возникает желание переделать игрушки, постройки или изготовить новые. Конструктор LEGO и программное обеспечение к нему LEGO WeDO предоставляет прекрасную возможность учиться ребенку на собственном опыте.

2.3. Способы и направления поддержки детской инициативы

взаимоотношений и взаимодействия. Ее сущностные признаки, наличие партнерской (равноправной) позиции взрослого и партнерской формы организации (сотрудничество взрослого и детей, возможность свободного размещения, перемещения и общения детей) Содержание программы реализуется в различных видах совместной деятельности: игровой, коммуникативной, двигательной, познавательно-исследовательской, продуктивной, на основе моделирования образовательных ситуаций лего- конструирования, которые дети решаются в сотрудничестве со взрослым. Игра – как основной вид деятельности, способствующий развитию самостоятельного мышления и творческих способностей на основе воображения является продолжением совместной

деятельности, переходящей в самостоятельную детскую инициативу. Основные формы и

Совместная деятельность - взрослого и детей подразумевает особую систему их

- конструирование, программирование, творческие исследования, презентация своих моделей, соревнования между группами;
- словесный (беседа, рассказ, инструктаж, объяснение);
- наглядный (показ, видеопросмотр, работа по инструкции);
- практический (составление программ, сборка моделей);
- репродуктивный метод (восприятие и усвоение готовой информации);
- частично-поисковый (выполнение вариативных заданий);
- исследовательский метод;

методы образовательной деятельности:

- метод стимулирования и мотивации деятельности (игровые эмоциональные ситуации, похвала, поощрение.

Способы и направления поддержки детской инициативы обеспечивает использование интерактивных методов: проектов, проблемного обучения, эвристическая беседа, обучения в сотрудничестве, взаимного обучения, портфолио.

Алгоритм организации совместной деятельности

Обучение с LEGO Education ВСЕГДА состоит из 4 этапов: установление взаимосвязей, конструирование, рефлексия и развитие.

Установление взаимосвязей.

При установлении взаимосвязей дети получают новые знания, основываясь на личный опыт, расширяя, и обогащая свои представления. Каждая образовательная ситуация реализуемая на занятии проектируется на задании комплекта, к которому прилагается анимированная презентация с участием фигурок героев — Маши и Макса. Использование анимации, позволяет проиллюстрировать занятие, заинтересовать детей, побудить их к обсуждению темы занятия. В «Рекомендациях учителю» к каждому занятию предлагаются и другие способы установления взаимосвязей.

Конструирование

Новые знания лучше всего усваивается тогда, когда мозг и руки «работают вместе». Работа с продуктами LEGO Education базируется на принципе практического обучения: сначала обдумывание, а затем создание моделей. В каждом задании комплекта для этапа «Конструирование» приведены подробные пошаговые инструкции. При желании можно специально отвести время для усовершенствования предложенных моделей, или для создания и программирования своих собственных.

Рефлексия и развитие

Обдумывая и осмысливая проделанную работу, дети углубляют конкретизируют полученные представления . Они укрепляют взаимосвязи между уже имеющимися у них знаниями и вновь приобретённым опытом. В разделе «Рефлексия» дети исследуют, какое

влияние на поведение модели оказывает изменение ее конструкции: они заменяют детали, проводят измерения, оценки возможностей модели, создают отчеты, проводят презентации, придумывают сюжеты, разыгрывают сюжетно- ролевые ситуации, задействуют в них свои модели. На этом этапе педагог получает прекрасные возможности для оценки достижений воспитанников.

Ш. Организационный раздел.

3.1. Организационное обеспечение реализации программы

Программа предполагает организацию совместной и самостоятельной деятельности один раз в неделю с группой детей старшего дошкольного возраста. Предусмотренная программой деятельность может организовываться как на базе одной отдельно взятой группы, так и в смешанных группах, состоящих из воспитанников старшей и подготовительной группы.

Краткие сведения о группе

Дети подготовительной группы

Состав – мобильный.

Набор – свободный.

Форма занятий – подгрупповая, индивидуальная.

Год обучения – 1.

Количество занятий в неделю – 1 занятие по 30 минут.

3.2. Материально – техническое обеспечение

Современные робототехнические системы включают в себя микропроцессорные системы управления, системы движения, оснащенные развитым сенсорным обеспечением и средствами адаптации к изменяющимся условиям внешней среды. При изучении таких систем широко используются модели. Одним из первых конструкторов, с помощью которых можно создавать программируемые модели, является комплект LEGO WeDo—конструктор (набор сопрягаемых деталей и электронных блоков) для создания программируемого робота.

Программа предусматривает использование базовых датчиков и двигателей комплекта LEGO WeDo, также изучение основ программирования в среде LEGO WeDo. Для организации потребуется:

Конструктор ПервоРобот LEGO WeDo

Программное обеспечение ПервоРобот LEGO WeDo, которое включает в себя: В набор входят 158 элементов, включая USB ЛЕГО-коммутатор, мотор, датчик наклона и датчик расстояния, позволяющие сделать модель более маневренной и «умной». USB LEGO-коммутатор. Через этот коммутатор осуществляется управление датчиками и моторами при помощи программного обеспечения WeDoTM. Через два разъёма коммутатора подаётся питание на моторы и проводится обмен данными между датчиками и компьютером. Программное обеспечение LEGO® WeDo автоматически обнаруживает каждый мотор или датчик. Программа может работать с тремя USB LEGO-коммутаторами одновременно. Мотор можно запрограммировать направление вращения мотора (по часовой стрелке или против) и его мощность. Питание на мотор (5В) подаётся через USB порт компьютера. К мотору можно подсоединять оси или другие LEGO-элементы.

Датчик наклона

Датчик наклона сообщает о направлении наклона. Он различает шесть положений: «Носом вверх», «Носом вниз», «На левый бок», «На правый бок», «Нет наклона» и «Любой наклон».

Датчик расстояния

Датчик расстояния обнаруживает объекты на расстоянии до 15 см.

Программное обеспечение ПервоРобот LEGO® WeDoTM (LEGO Education WeDo Software) Программное обеспечение конструктора WeDoTM предназначено для создания программ путём перетаскивания Блоков из Палитры на Рабочее поле и их встраивания в цепочку программы. Для управления моторами, датчиками наклона и расстояния, предусмотрены

соответствующие блоки. Кроме них имеются и Блоки для управления клавиатурой и дисплеем компьютера, микрофоном и громкоговорителем. Программное обеспечение автоматически обнаруживает каждый мотор или датчик, подключенный к портам LEGO®-коммутатора, комплект содержит 12 заданий. Все задания снабжены анимацией и пошаговыми сборочными инструкциями.

Ноутбук

Проектор

3.3. Методическое обеспечение

Литература

- 1. Наука. Энциклопедия. М., «РОСМЭН», 2001. 125 с.
- 2. Энциклопедический словарь юного техника. М., «Педагогика», 1988. 463 с.
- 3. «Робототехника для детей и родителей» С.А. Филиппов, Санкт-Петербург «Наука» 2010. 195 с.
- 4. Программа курса «Образовательная робототехника» . Томск: Дельтаплан, 2012.- 16с.
- 5. Книга для учителя компании LEGO System A/S, Aastvej 1, DK-7190 Billund, Дания; авторизованный перевод Институт новых технологий г. Москва.
- 6.Сборник материалов международной конференции «Педагогический процесс, как непрерывное развитие творческого потенциала личности» Москва.: МГИУ, 1998г.
- 7. Журнал «Самоделки». г. Москва. Издательская компания «Эгмонт Россия Лтд.» LEGO.
- г. Москва. Издательство ООО «Лего»
- 8. Индустрия развлечений. ПервоРобот. Книга для учителя и сборник проектов. LEGO Group, перевод ИНТ, 87 с., илл.
- 9.Интернет ресурсы:

http://int-edu.ru

http://7robots.com/

http://www.spfam.ru/contacts.html

http://robocraft.ru/

http://iclass.home-edu.ru/course/category.php?id=15

/ http://insiderobot.blogspot.ru/

https://sites.google.com/site/nxtwallet/

Месяц	Содержание темы
Октябрь	1.Знакомство со средой программирования (блоки, пиктограммы, связь
	блоков программы с конструктором)
	Забавные игрушки
	1.«Умная вертушка»: знакомство с «первыми шагами»; конструирование модели
	2.«Умная вертушка»: развитие (программирование модели с более
	сложным поведением)
	3.«Железная дорога»: знакомство с «первыми шагами»; конструирование модели
	4.« Железная дорога»: развитие (программирование модели с более сложным поведением)
Ноябрь	1.«Теплоход»: знакомство с «первыми шагами»; конструирование модели
_F -	2.«Теплоход»: развитие (программирование модели с более сложным поведением)
	3.«Спасение самолета»: знакомство с «первыми шагами»; конструирование
	модели
	4.« Спасение самолета»: развитие (программирование модели с более
	сложным поведением)
Декабрь	Животный мир
	1.«Танцующая птица»: знакомство с «первыми шагами»; конструирование
	модели
	2.«Танцующая птица»: развитие (программирование модели с более
	сложным поведением) 3.«Обезьянка-барабанщик»: знакомство с «первыми шагами»;
	3.«Ооезьянка-оараоанщик». знакомство с «первыми шагами», конструирование модели
	4.« Обезьянка-барабанщик»: развитие (программирование модели с более
	т. « Оосзынка-оараоанщик». развитие (программирование модели с оолее сложным поведением)
Январь	1.«Рычащий лев»: знакомство с «первыми шагами»; конструирование
Жирь	модели
	2.« Рычащий лев»: развитие (программирование модели с более сложным
	поведением)
Февраль	1.«Львиная семейка»: знакомство с «первыми шагами»; конструирование
	модели
	2.«Львиная семейка»: развитие (программирование модели с более
	сложным поведением)
	Человекоподобные роботы 3. «Нападающий»: знакомство с «первыми шагами»; конструирование
	модели
	модели 4. «Нападающий»: развитие (программирование модели с более сложным
	поведением)
Март	1. «Вратарь»: знакомство с «первыми шагами»; конструирование модели
wap i	2. «Вратарь»: развитие (программирование модели с более сложным
	поведением)
	3.«Чемпионат по футболу»: знакомство с «первыми шагами»;
	конструирование модели
	4.«Ликующие болельщики»: знакомство с «первыми шагами»;
	конструирование модели
Апрель	1.«Ликующие болельщики»: развитие (программирование модели с более
-	сложным поведением, конструирование машин по замыслу)