МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Министерство образования и науки Республики Татарстан Управление образования ИКМО г.Казани МБОУ "Школа №84"

PACCMOTPEHO

Руководитель кафедры ЕНЦ

Н.П. Цветкова

Протокол № 1 от «28» 08 2024 г.

УТВЕРЖДЕНО

Директор МБОУ «СОШ № 84»

А.А. Жадько

Приказ № 182/08 от «31» 08 2024

РАБОЧАЯ ПРОГРАММА

Γ.

учебного курса «Биохимия» для обучающихся 11 классов

Казань 2024-2025

Пояснительная записка

Курс «Биохимия» реализует межпредметные связи с экологией, социологией, математикой, информатикой, медициной и фармакологией, а также практической химией в решении проблемы сохранения и укрепления здоровья, способствует выбору профиля дальнейшего обучения, т.е. способствует профессиональному самоопределению выпускников.

Актуальность программы:

Актуальность данной программы состоит в том, что обучающиеся в процессе обучения получат возможность углубить знания по биологии и химии и выявить причины нарушения здоровья человека на молекулярном уровне, расширят представления о научно обоснованных правилах и нормах использования веществ, применяемых в быту и на производстве.

Цель курса:

углубление знаний о молекулярных основах жизни, о структуре и функциях органических веществ, полученных в курсах общей биологии и органической химии; ознакомление с современными достижениями и перспективными направлениями развития биохимии.

Задачи курса:

- расширить и систематизировать знания обучающихся, полученные в курсах общей биологии и органической химии;
- создать условия для развития творческого мышления, умения самостоятельно применять и пополнять свои знания в областях молекулярная биология и биологическая химия, что способствует формированию экологической культуры.
- осуществлять подготовку к ЕГЭ в области цитологии, молекулярной биологии, генетики и др.;
 - формировать навыки исследовательской и проектной деятельности.
 Изучение курса в 11 классе 34 ч, 1 ч в неделю.

Учебно-методический комплекс:

Программы элективного курса «Биохимия» под редакцией : Володина Г. Б., Крючкова Н. Н., Черникова С. В. Издательство «Дрофа» - 2019.)

Планируемые результаты освоения курса По завершении курса учащиеся должны овладеть следующими результатами:

Личностные результаты:

- 1. знание и понимание: основных исторических событий, связанных с развитием химии; достижений в области химии и культурных традиций своей страны (в том числе научных); общемировых достижений в области химии; основных принципов и правил отношения к природе; основ здорового образа жизни и здоровьесберегающих технологий; правил поведения в чрезвычайных ситуациях, связанных с воздействием различных веществ; основных прав и обязанностей гражданина (в том числе обучающегося), связанных с личностным, профессиональным и жизненным самоопределением; социальной значимости и содержания профессий, связанных с химией;
- 2. *чувство гордости* за российскую, биологическую и химическую науку и достижения ученых; уважение и принятие достижений химии; любовь и бережное отношение к природе; уважение и учет мнений окружающих к личным достижениям в изучении химии;
- 3. *признание* ценности собственного здоровья и здоровья окружающих людей; необходимости самовыражения, самореализации, социального признания;
- 4. *осознание* степени готовности к самостоятельным поступкам и действиям, ответственности за их результаты;
- 5. *проявление* экологического сознания, доброжелательности, доверия и внимательности к людям, готовности к сотрудничеству; инициативы и любознательности в изучении веществ и процессов; убежденности в необходимости разумного использования достижений науки и технологий;
- 6. *умение* устанавливать связи между целью изучения химии и тем, для чего это нужно; строить жизненные и профессиональные планы с учетом успешности изучения химии и собственных приоритетов.

<u>Метапредметные результаты.</u> Метапредметные результаты включают освоенные обучающимися межпредметные понятия и универсальные учебные действия (регулятивные, познавательные, коммуникативные).

Регулятивные УУД:

- 1. Умение самостоятельно определять цели обучения, ставить и формулировать новые задачи в учебе и познавательной деятельности, развивать мотивы и интересы своей познавательной деятельности.
- 2. Умение самостоятельно планировать пути достижения целей, в том числе альтернативные, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач.
- 3. Умение соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности в процессе достижения результата, определять способы действий в рамках предложенных условий и требований, корректировать свои действия в соответствии с изменяющейся ситуацией.
- 4. Умение оценивать правильность выполнения учебной задачи, собственные возможности ее решения.

5. Владение основами самоконтроля, самооценки, принятия решений и осуществления осознанного выбора в учебной и познавательной.

Познавательные УУД:

- 1. Умение определять понятия, создавать обобщения, устанавливать аналогии, классифицировать, самостоятельно выбирать основания и критерии для классификации, устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное, по аналогии) и делать выводы.
- 2. Умение создавать, применять и преобразовывать знаки и символы, модели и схемы для решения учебных и познавательных задач.
 - 3. Смысловое чтение.
- 4. Формирование и развитие экологического мышления, умение применять его в познавательной, коммуникативной, социальной практике и профессиональной ориентации.
- 5. Развитие мотивации к овладению культурой активного использования словарей и других поисковых систем.

Коммуникативные УУД:

- 1. Умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками; работать индивидуально и в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учета интересов; формулировать, аргументировать и отстаивать свое мнение.
- 2. Умение осознанно использовать речевые средства в соответствии с задачей коммуникации для выражения своих чувств, мыслей и потребностей для планирования и регуляции своей деятельности; владение устной и письменной речью, монологической контекстной речью.
- 3. Формирование и развитие компетентности в области использования информационно-коммуникационных технологий (ИКТ).

Предметные результаты:

- 1. знать характеристику основных классов соединений, входящих в состав живой материи; важнейшие разделы биохимии: белки, ферменты, липиды, нуклеиновые кислоты, витамины; основные принципы, лежащие в основе количественного и качественного анализа;
 - 2. определять принадлежность веществ к определенному классу соединений;
 - 3. проводить качественные реакции на белки, ферменты, витамины;
 - 4. наблюдать и вести грамотные записи наблюдаемых явлений;
- 5. производить сравнительный анализ полученных результатов, делать выводы. При изучении данного курса учащиеся получат возможность глубже познакомится с:
 - 1. сущностью биохимии и медицины как науки;
- 2. основными этапами биосинтеза белка в эукариотической клетке транскрипцию и трансляцию;
 - 3. реакцией клеток на воздействие вредных факторов среды;
 - 4. зависимостью проявления генов от условий окружающей среды.
- 5. строением биологических объектов: клетки, генов и хромосом, неорганических и органических веществ клетки;
 - 6. процессами метаболизма.

Содержание элективного курса 11 класс

Введение (1 час).

Биохимия как наука. История развития биохимии. Роль отечественных ученых в развитии биохимии (работы А. Я. Данилевского, Н. И. Лунина, А. Н. Баха, В. А. Энгельгардта, А. Н. Белозерского, А. С. Спирина, Ю. А. Овчинникова, В. П. Скулачева и др.). Взаимосвязь биохимии с молекулярной биологией, биофизикой и биоорганической химией.

Значение биохимии для развития биологии, медицины, биотехнологии, сельского хозяйства, генетики и экологии. Методы биохимических исследований и их характеристика.

Вода и её роль в биологических системах (2 часа).

Вода в биосфере. Взаимосвязь двух водных систем - внутренней среды организмов и Мирового океана. Вода в жизни человека. Физико-химические свойства воды. Функции воды в клетке. Роль воды в повреждении клетки. Выделение воды.

Биогенные элементы и их соединения (10 часов).

Теория. Классификация и распространенность химических элементов в организме человека. Органогены. Металлы жизни. Биогенные элементы. Макроэлементы.

Микроэлементы. Гомеостаз. Водород и его соединения. Функции воды. Связанная, свободная вода. Структурированная, деструктурированная вода. Тяжелая вода.

Дистиллированная вода. Углерод и его соединения. Оксид углерода (П). Обменный механизм. Кислород, сера и их соединения. Биологическое окисление. Пероксид водорода. Азот, фосфор и их соединения. Аммиак. Оксид азота (I). Оксид азота (П). Оксид азота (Ш). Нитриты. Оксид азота (IV). Оксид азота(У). Нитраты. Атомы галогенов и их соединения.

Окислительно-восстановительные свойства галогенов. Кислотно-основные свойства галогенов. Комплексообразующие свойства галогенов.

Практика. Составление схем круговоротов биогенных элементов в природе. Круговорот воды в природе. Круговорот углерода в природе. Круговорот кислорода в природе. Круговорот серы в природе. Круговорот азота в природе. Круговорот фосфора в природе.

Практическая работы: 1.Простейшие способы очистки воды из природных источников.

Практика. Работа со справочной литературой по определению препаратов, применяемых в медицинской практике. Препараты калия и натрия, применяемые в медицинской практике. Препараты магния и кальция, применяемые в медицинской практике.

Препараты марганца, применяемые в медицинской практике. Препараты железа и кобальта, применяемые в медицинской практике. Препараты меди и цинка, применяемые в медицинской практике.

Практические работы: 1.Получение комплексных соединений.

2. Изучение состава препарата «Ферроплекс».

Решение задач по общей химии с медико-биологической направленностью (*3 часа*). **Практика**. Количество вещества. Моль. Молярная масса. Строение ядра атома.

Нейтроны. Протоны. Электроны. Изотопы. Решение задач по теме « Количество вещества» и

«Строение атома».Массовая доля элемента в формуле. Расчеты по химическим формулам. Вывод формулы химического соединения по известным массовым долям элементов.Растворы. Масса раствора. Объём раствора. Массовая доля растворенного вещества. Плотность раствора. Молярная концентрация. Решение задач по теме « Растворы». Расчеты по уравнению реакции.

Образ жизни и вредные привычки (2 часа).

Практика. Подготовка презентаций по здоровому образу жизни. Факторы, влияющие на здоровье человека. Здоровый образ жизни. Правила здорового образа жизни. Занятия физической культурой. Рациональное питание. Личная гигиена. Закаливание. Отказ от вредных привычек.

Белки (2 часа).

Роль белков в построении и функционировании живых систем. Аминокислотный состав белков. Понятие о протеиногенных аминокислотах. Способ связи аминокислот в белковой

молекуле. Пептиды. Природные пептиды (глутатион, вазопрессин, энкефалины, эндорфины и др.), их физиологическое значение и использование в качестве медицинских препаратов. Химический синтез пептидов заданного строения и возможности их применения.

Структура белковых молекул.

Первичная структура белков. Принципы и методы определения первичной структуры белка. Автоматические и молекулярно-генетические методы определения первичной структуры. Компьютерные банки данных о первичной структуре белков. Эволюция первичной структуры белков.

Вторичная структуры белков. Связь первичной и вторичной структур белковой молекулы. Классификация белков по элементам вторичной структуры. Доменный принцип структурной организации белков. Понятие о структурных и функциональных доменах (на примере иммуноглобулинов и каталитически активных белков).

Третичная структура белков. Типы связей, обеспечивающих поддержание третичной структуры. Динамичность третичной структуры белков. Предсказание пространственного строения белков исходя из их первичной структуры.

Четвертичная структура белков. Конкретные примеры четвертичной структуры белков (гемоглобин, лактатдегидрогеназа, каталаза и др.).

Номенклатура и классификация белков. Функциональная классификация белков и характеристика отдельных групп: структурных, сократительных, защитных, токсических, рецепторных и регуляторных. Белки (металлотионеины, гемоглобин и др.) как детоксиканты ксенобиотиков в организме.

Практические работы:

1. Приготовление раствора белка (яичного альбумина). Разделение белков куриного яйца по их растворимости. Денатурация белков.

Ферменты (2 часа).

Разнообразие каталитически активных молекул. Каталитически активные белки (энзимы), каталитически активные РНК (рибозимы), каталитически активные антитела (абзимы).

Каталитическая функция белков. Различия в свойствах ферментов и катализаторов иной природы. Специфичность действия ферментов. Роль отечественных ученых (И. П. Павлов, А. Е. Браунштейн, П. А. Энгельгардт и др.) в развитии энзимологии. Ферменты мономеры (трипсин, лизоцим) и мультимеры.

Практические работы:

- 1. Сравнительный анализ продуктов кислотного и ферментативного гидролиза дии полисахаридов (на примере сахарозы и крахмала).
- 2. Влияние на активность ферментов температуры, pH, активаторов и ингибиторов.

Витамины и некоторые другие биологически активные соединения (2 часа).

История открытия витаминов. Роль витаминов в питании человека и животных. Авитаминозы, гиповитаминозы, гипервитаминозы. Соотношение витаминов и коферментов.

Жирорастворимые витамины. Витамин A и его участие в зрительном акте. Витамины D, K и E и их роль в обмене веществ. Водорастворимые витамины. Витамины B₁, B₂, B₅, Bб,

В12, их значение в обмене веществ. Витамин С (аскорбиновая кислота).

Разнообразие биологически активных соединений: антивитамины, антибиотики, фитонциды, гербициды, дефолианты, ростовые вещества (важнейшие представители и механизмы действия).

Практические работы:

1. Качественные реакции на витамины.

Распад и биосинтез белков (3 часа).

Распад белков. Ферменты, осуществляющие распад белков. Метаболизм аминокислот. Конечные продукты распада белков и пути связывания аммиака в организме. Пути новообразования аминокислот. Активирование аминокислот (синтез аминоацил-тРНК).

Возможность перепрограммирования трансляции.

Липиды и их обмен (1 часа).

Общая характеристика и классификация липидов. Структура и функции липидов. Роль липидов в построении биологических мембран. Структура и функции липопротеинов.

Обмен жиров. Распад жиров и (3-окисление высших жирных кислот. Глиоксилевый цикл и его роль во взаимосвязи обмена липидов и углеводов. Механизм биосинтеза высших жирных кислот. Биосинтез триглицеридов. Нарушения в обмене жиров. Ожирение и его причины.

Воски, их строение, функции и представители (спермацет, пчелиный воск). Стериды. Стеролы (холестерол, эргостерол и др.). Структура и функции стероидов (холевая кислота, стероидные гормоны). Фосфолипиды. Биологическая роль фосфолипидов.

Гормоны и их роль в обмене веществ (2 часа).

Классификация гормонов. Стероидные гормоны. Механизм действия стероидных гормонов. Пептидные гормоны. Характеристика инсулина, гормона роста, тиреотропина, гастрина, вазопрессина. Механизм действия пептидных гормонов (на примере глюкагена и инсулина). Сахарный диабет и его виды.

Прочие гормоны (адреналин, ауксин, гиббереллины, цитокинины, простагландины), их структура и механизм действия. Рилизинг-факторы гормонов. Нейрогормоны (эндорфины и энкефалины). Применение гормонов в медицине.

Проблемы биохимической экологии. (4 часа).

Эколого-биохимические взаимодействия с участием различных групп организмов. Пищевые детергенты и антифиданты. Пищевые аттрактанты и стимуляторы. Накопление и использование животными вторичных метаболитов растений. Антропогенные биоактивные вещества и проблемы химического загрязнения биосферы.